PipelineModel¶
- 
class 
pyspark.ml.PipelineModel(stages: List[pyspark.ml.base.Transformer])[source]¶ Represents a compiled pipeline with transformers and fitted models.
New in version 1.3.0.
Methods
clear(param)Clears a param from the param map if it has been explicitly set.
copy([extra])Creates a copy of this instance.
explainParam(param)Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
extractParamMap([extra])Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
getOrDefault(param)Gets the value of a param in the user-supplied param map or its default value.
getParam(paramName)Gets a param by its name.
hasDefault(param)Checks whether a param has a default value.
hasParam(paramName)Tests whether this instance contains a param with a given (string) name.
isDefined(param)Checks whether a param is explicitly set by user or has a default value.
isSet(param)Checks whether a param is explicitly set by user.
load(path)Reads an ML instance from the input path, a shortcut of read().load(path).
read()Returns an MLReader instance for this class.
save(path)Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
set(param, value)Sets a parameter in the embedded param map.
transform(dataset[, params])Transforms the input dataset with optional parameters.
write()Returns an MLWriter instance for this ML instance.
Attributes
Returns all params ordered by name.
Methods Documentation
- 
clear(param: pyspark.ml.param.Param) → None¶ Clears a param from the param map if it has been explicitly set.
- 
copy(extra: Optional[ParamMap] = None) → PipelineModel[source]¶ Creates a copy of this instance.
New in version 1.4.0.
- Parameters
 extra – extra parameters
- Returns
 new instance
- 
explainParam(param: Union[str, pyspark.ml.param.Param]) → str¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
- 
explainParams() → str¶ Returns the documentation of all params with their optionally default values and user-supplied values.
- 
extractParamMap(extra: Optional[ParamMap] = None) → ParamMap¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
- Parameters
 - extradict, optional
 extra param values
- Returns
 - dict
 merged param map
- 
getOrDefault(param: Union[str, pyspark.ml.param.Param[T]]) → Union[Any, T]¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
- 
getParam(paramName: str) → pyspark.ml.param.Param¶ Gets a param by its name.
- 
hasDefault(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶ Checks whether a param has a default value.
- 
hasParam(paramName: str) → bool¶ Tests whether this instance contains a param with a given (string) name.
- 
isDefined(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶ Checks whether a param is explicitly set by user or has a default value.
- 
isSet(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶ Checks whether a param is explicitly set by user.
- 
classmethod 
load(path: str) → RL¶ Reads an ML instance from the input path, a shortcut of read().load(path).
- 
classmethod 
read() → pyspark.ml.pipeline.PipelineModelReader[source]¶ Returns an MLReader instance for this class.
New in version 2.0.0.
- 
save(path: str) → None¶ Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
- 
set(param: pyspark.ml.param.Param, value: Any) → None¶ Sets a parameter in the embedded param map.
- 
transform(dataset: pyspark.sql.dataframe.DataFrame, params: Optional[ParamMap] = None) → pyspark.sql.dataframe.DataFrame¶ Transforms the input dataset with optional parameters.
New in version 1.3.0.
- Parameters
 - dataset
pyspark.sql.DataFrame input dataset
- paramsdict, optional
 an optional param map that overrides embedded params.
- dataset
 - Returns
 pyspark.sql.DataFrametransformed dataset
- 
write() → pyspark.ml.util.MLWriter[source]¶ Returns an MLWriter instance for this ML instance.
New in version 2.0.0.
Attributes Documentation
- 
params¶ Returns all params ordered by name. The default implementation uses
dir()to get all attributes of typeParam.
-