MicroProfile Context Propagation

1.0, July 08, 2019

Table of Contents

Microprofile Context Propagation
MicroProfile Context Propagation Specification
Introduction
Motivation
Solution
Builders
Example usage
Sharing Instances
Specifying Defaults via MicroProfile Config
Builders for ManagedExecutor and ThreadContext
Example ManagedExecutor Builder Usage
Example ThreadContext Builder Usage
Reuse of Builders
CDI Injection
Example Producer for ManagedExecutor
Example Producer for ThreadContext
Establishing default values with MicroProfile Config
Specifying Defaults for Array Properties in MicroProfile Config
Overriding values with MicroProfile Config
Transaction Context
No Support for Transactions
Propagation of the Absence of a Transaction, but not of Active Transactions
Propagation of Active Transactions for Serial Use, but not Parallel
Propagation of Active Transactions for Parallel Use
MicroProfile Context Propagation Examples
Contextualize a new CompletableFuture and all dependent stages
Apply thread context to a CompletionStage and all its dependent stages
Apply thread context to a single CompletionStage action
Reusable Context Snapshot
Run under the transaction of the executing thread
Thread Context Providers
Example
ThreadContextProvider
ThreadContextSnapshot
ServiceLoader entry
Usage from Application
Context Manager Provider
Context Manager

© 00 00 J N O o 1 U ook W W w W

N DN DN N D DN DN DN DNDNDDNDNDNDN R = = = = =
N O ok W W W R RO 0O 0O 0 00O RN e

Context Manager Builder
Context Manager Extension

Release Notes for MicroProfile Context Propagation 1.0

27
28
29

Specification: MicroProfile Context Propagation

Version: 1.0

Status: Final

Release: July 08, 2019

Copyright (c) 2018 Contributors to the Eclipse Foundation

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and
limitations under the License.

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

Microprofile Context Propagation

MicroProfile Context Propagation
Specification

Introduction

The MicroProfile Context Propagation specification introduces APIs for propagating contexts across
units of work that are thread-agnostic. It makes it possible to propagate context that was
traditionally associated to the current thread across various types of units of work such as
CompletionStage, CompletableFuture, Function, Runnable regardless of which particular thread ends
up executing them.

Motivation

When using a reactive model, execution is cut into small units of work that are chained together to
assemble a reactive pipeline. The context under which each unit of work executes is often
unpredictable and depends on the particular reactive engine used. Some units might run with the
context of a thread that awaits completion, or the context of a previous unit that completed and
triggered the dependent unit, or with no/undefined context at all. Existing solutions for transferring
thread context, such as the EE Concurrency Utilities ContextService, are tied to a specific
asynchrony model, promotes usage of thread pools, is difficult to use and require a lot of
boilerplate code. This specification makes it possible for thread context propagation to easily be
done in a type-safe way, keeping boilerplate code to a minimum, as well as allowing for thread
context propagation to be done automatically for many types of reactive models.

We distinguish two main use-cases for propagating contexts to reactive pipelines:

+ Splitting units of work into a sequential pipeline where each unit will be executed after the
other. Turning an existing blocking request into an async request would produce such
pipelines.

* Fanning out units of work to be executed in parallel on a managed thread pool. Launching an
asynchronous job from a request without waiting for its termination would produce such
pipelines.

Goals

* Pluggable context propagation to the most common unit of work types.

* Mechanism for thread context propagation to CompletableFuture and CompletionStage units of
work that reduces the need for boilerplate code.

» Full compatibility with EE Concurrency spec, such that proposed interfaces can seamlessly work
alongside EE Concurrency, without depending on it.

Solution

This specification introduces two interfaces that contain methods that can work alongside EE
Concurrency, if available.

The interface, org.eclipse.microprofile.context.ManagedExecutor, provides methods for obtaining
managed instances of CompletableFuture which are backed by the managed executor as the default
asynchronous execution facility and the default mechanism of defining thread context propagation.
Similar to EE Concurrency’s ManagedExecutorService, the MicroProfile ManagedExecutor also
implements the Java SE java.util.concurrent.ExecutorService interface, using managed threads
when asynchronous invocation is required. It is possible for a single implementation to be capable
of simultaneously implementing both ManagedExecutor and ManagedExecutorService interfaces.

A second interface, org.eclipse.microprofile.context.ThreadContext, provides methods for
individually contextualizing units of work such as CompletionStage, CompletionFuture, Runnable,
Function, Supplier and more, without tying them to a particular thread execution model. This gives
the user finer-grained control over the capture and propagation of thread context by remaining
thread execution agnostic. It is possible for a single implementation to be capable of simultaneously
implementing both ThreadContext and ContextService interfaces.

Builders

Instances of ManagedExecutor and ThreadContext can be constructed via builders with fluent API, for
example,

ManagedExecutor executor = ManagedExecutor.builder()
.propagated(ThreadContext.APPLICATION)
.cleared(ThreadContext.ALL_REMAINING)
.maxAsync(5)

.build();

ThreadContext threadContext = ThreadContext.builder()
.propagated(ThreadContext.APPLICATION, ThreadContext.CDI)
.cleared(ThreadContext.ALL REMAINING)

.build();

Applications should shut down instances of ManagedExecutor that they build after they are no longer
needed. The shutdown request serves as a signal notifying the container that resources can be
safely cleaned up.

Example usage

For managed executor,

CompletableFuture<Long> stage = executor.newIncompleteFuture()
.thenApply(function)
.thenAccept(consumer);

stage.completeAsync(supplier);

Or similarly for thread context,

threadContext.withContextCapture(unmanagedCompletionStage)
.thenApply(function)
.thenAccept(consumer);

Sharing Instances

The definition of CDI producers at application scope, combined with injection, is a convenient
mechanism for sharing instances across an application.

ManagedExecutor executor1 = ManagedExecutor.builder()
.propagated(ThreadContext.SECURITY, ThreadContext.APPLICATION)
.build();

... // in some other bean

void setCompletableFuture(ManagedExecutor executor2) {
completableFuture = executor2.newIncompleteFuture();

}

... // in yet another bean

ManagedExecutor executor3;

// example qualifier annotation
(RetentionPolicy.RUNTIME)

({ ElementType.FIELD, ElementType.METHOD, ElementType.PARAMETER })
public SecAndAppContextQualifier {}

Specifying Defaults via MicroProfile Config

MicroProfile Config properties can be used to specify defaults for configuration attributes that are
not otherwise configured on ManagedExecutor and ThreadContext instances. Here is an example that
includes all of the available attributes that can be defaulted:

mp.
mp.
.context.ManagedExecutor.maxAsync=10
mp.

mp

mp.
.context.ThreadContext.cleared=Security,Transaction

mp.

mp

context.ManagedExecutor.propagated=Security,Application
context.ManagedExecutor.cleared=Remaining

context.ManagedExecutor.maxQueued=-1
context.ThreadContext.propagated=

context.ThreadContext.unchanged=Remaining

Builders for ManagedExecutor and
ThreadContext

The MicroProfile Context Propagation spec defines a fluent builder API to programmatically obtain
instances of ManagedExecutor and ThreadContext. Builder instances are obtained via static builder()
methods on ManagedExecutor and ThreadContext.

Example ManagedExecutor Builder Usage

import java.util.concurrent.CompletionStage;

import java.util.concurrent.CompletableFuture;

import javax.servlet.ServletConfig;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import org.eclipse.microprofile.context.ManagedExecutor;
import org.eclipse.microprofile.context.ThreadContext;

public class ExampleServlet extends HttpServlet {
ManagedExecutor executor;

public void init(ServletConfig config) {
executor = ManagedExecutor.builder()
.propagated(ThreadContext.APPLICATION)
.cleared(ThreadContext.ALL _REMAINING)
.maxAsync(5)
.build();

}

public void doGet(HttpServletRequest req, HttpServletResponse res) {
completionStage = executor.runAsync(task1)
.thenRunAsync(task2)

}

public void destroy() {
executor.shutdown();

}

Applications are encouraged to cache and reuse ManagedExecutor instances. It is the responsibility of
the application to shut down ManagedExecutor instances that are no longer needed, so as to allow the
container to efficiently free up resources.

Example ThreadContext Builder Usage

import java.util.concurrent.CompletableFuture;

import java.util.function.Function;

import java.util.function.Supplier;

import javax.servlet.ServletConfig;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import org.eclipse.microprofile.context.ThreadContext;

public class ExampleServlet extends HttpServlet {
ThreadContext threadContext;

public void init(ServletConfig config) {
threadContext = ThreadContext.builder()
.propagated(ThreadContext.APPLICATION, ThreadContext

.SECURITY)
.unchanged()
.cleared(ThreadContext.ALL_REMAINING)
.build();
}

public void doGet(HttpServletRequest req, HttpServletResponse res) {
Function<Long, Long> contextFn = threadContext.contextualFunction(x -> {
. operation that requires security & application context
return result;

1

// By using java.util.concurrent.CompletableFuture.supplyAsync rather

// than a managed executor, context propagation is unpredictable,

// except for the contextFn action that we pre-contextualized using

// ThreadContext above.

stage = CompletableFuture.supplyAsync(supplier)
.thenApplyAsync(function?)
.thenApply(contextFn)

Reuse of Builders

Instances of ManagedExecutor.Builder and ThreadContext.Builder retain their configuration after the
build method is invoked and can be reused. Subsequent invocations of the build() method create
new instances of ManagedExecutor and ThreadContext that operate independently of previously built
instances.

CDI Injection

In order to use ManagedExecutor and ThreadContext as CDI beans, define producer for them as
@ApplicationScoped so that instances are shared and reused. In most cases, more granular and
shorter-lived scopes are undesirable. For instance, having a new ManagedExecutor instance created
per HTTP request typically does not make sense. In the event that a more granular scope is desired,
the application must take care to supply a disposer to ensure that the executor is shut down once it
is no longer needed. When using application scope, it is optional to supply a disposer because the
specification requires the container to automatically shut down ManagedExecutor instances when the
application stops.

Example Producer for ManagedExecutor

Example qualifier,

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

import javax.inject.Qualifier;

(RetentionPolicy.RUNTIME)
({ ElementType.FIELD, ElementType.METHOD, ElementType.PARAMETER })
public SecurityAndCDIContext {}

Example producer and disposer,

import org.eclipse.microprofile.context.ManagedExecutor;
import org.eclipse.microprofile.context.ThreadContext;
import javax.enterprise.context.ApplicationScoped;
import javax.enterprise.inject.Produces;

public class MyFirstBean {
ManagedExecutor executor = ManagedExecutor.builder()
.propagated(ThreadContext.SECURITY, ThreadContext.CDI)

.build();

void disposeExecutor(ManagedExecutor exec) {
exec.shutdownNow();

}

Example injection point,

import org.eclipse.microprofile.context.ManagedExecutor;
import javax.enterprise.context.ApplicationScoped;
import javax.inject.Inject;

public class MySecondBean {

ManagedExecutor sameExecutor;

Example Producer for ThreadContext

Example qualifier,

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

import javax.inject.Qualifier;

(RetentionPolicy.RUNTIME)
({ ElementType.FIELD, ElementType.METHOD, ElementType.PARAMETER })
public AppContext {}

Example producer method,

import org.eclipse.microprofile.context.ThreadContext;
import javax.enterprise.context.ApplicationScoped;
import javax.enterprise.inject.Produces;

public class MyFirstBean {

createAppContextPropagator() {
return ThreadContext.builder()
.propagated(ThreadContext.APPLICATION)
.cleared(ThreadContext.SECURITY, ThreadContext.TRANSACTION)
.unchanged(ThreadContext.ALL_REMAINING)
.build();

Example injection point,

import org.eclipse.microprofile.context.ThreadContext;
import javax.enterprise.context.ApplicationScoped;
import javax.inject.Inject;

@ApplicationScoped
public class MySecondBean {
Function<Integer, Item> findItem;

@Inject
protected void setFindItem(@AppContext ThreadContext appContext) {
findItem = appContext.contextualFunction(i -> {
try (Connection con =
((DataSource) InitialContext.doLookup("java:comp/env/ds1"))
.getConnection();
PreparedStatement stmt = con.prepareStatement(sql)) {
stmt.setInt(1, 1);
return toltem(stmt.executeQuery());
} catch (Exception x) {
throw new CompletionException(x);
}
b

10

Establishing default values with
MicroProfile Config

If a MicroProfile Config implementation is available, MicroProfile Config can be used to establish
default values for configuration attributes of ManagedExecutor and ThreadContext. This allows the
application to bypass configuration of one or more attributes when using the builders to create
instances.

For example, you could specify MicroProfile Config properties as follows to establish a set of
defaults for ManagedExecutor,

mp.context.ManagedExecutor.propagated=Remaining
mp.context.ManagedExecutor.cleared=Transaction
mp.context.ManagedExecutor.maxAsync=10
mp.context.ManagedExecutor.maxQueued=-1

With these defaults in place, the application can create a ManagedExecutor instance without
specifying some of the configuration attributes,

executor = ManagedExecutor.builder().maxAsync(5).build();

In the code above, the application specifies only the maxAsync attribute, limiting actions and tasks
requested to run async to at most 5 running at any given time. The other configuration attributes
are defaulted as specified in MicroProfile config, with no upper bound on queued tasks,
Transaction context cleared, and all other context types propagated.

As another example, the following MicroProfile Config properties establish defaults for
ThreadContext,

mp.context.ThreadContext.propagated=
mp.context.ThreadContext.cleared=Security,Transaction
mp.context.ThreadContext.unchanged=Remaining

With these defaults in place, the application can create a ThreadContext instance without specifying
some of the configuration attributes,

cdiContextPropagator = ThreadContext.builder()
.propagated(ThreadContext.CDI)
.build();

In the code above, the application specifies only the propagated attribute, indicating that only CDI
context is propagated. The other configuration attributes inherit the defaults, which includes
clearing Security and Transaction context and leaving all other thread context types unchanged.

11

Specifying Defaults for Array Properties in
MicroProfile Config

When using MicroProfile Config to define defaults for array type properties (propagated, cleared,
and unchanged), the following rules apply for config property values:

* The value can be a single array element, multiple elements (delimited by ,), or empty.

» Array elements can be any value returned by a ThreadContextProvider's getThreadContextType()
method.

* Array elements can be any thread context type constant value from ThreadContext (such as
Security, Application, or Remaining).

* The usual rules from the MicroProfile Config specification apply, such as escaping special
characters.

In order to guarantee that empty string config values are interpreted properly, the MicroProfile
Context Propagation implementation must interpret both of the following as indicating empty:

» empty array

* array containing the empty String as its singular element

This is necessary due to a lack of clarity in the first several versions of the MicroProfile Config
specification about how the empty string value is to be interpreted for arrays of String.

12

Overriding values with MicroProfile Config

MicroProfile Config can also be used in the standard way to enable configuration attributes of the
ManagedExecutor and ThreadContext builders to be overridden. For example,

(RetentionPolicy.RUNTIME)
({ ElementType.FIELD, ElementType.METHOD, ElementType.PARAMETER })
public SecurityAndAppContext {}

ManagedExecutor createExecutor(
(name="exec1.maxAsync", defaultValue="5") Integer a,
(name="exec1.maxQueued", defaultValue="20") Integer q) {
return ManagedExecutor.builder()

.maxAsync(a)

.maxQueued(q)

.propagated(ThreadContext.SECURITY, ThreadContext
.APPLICATION)

.cleared(ThreadContext.ALL_REMAINING)

.build();
}

MicroProfile Config can be used to override configuration attributes from the above example as
follows,

exec1.maxAsync=10
exec1.maxQueued=15

13

Transaction Context

Implementations of MicroProfile Context Propagation are allowed to provide varying degrees of
support for transaction context.

This varies from not supporting transactions at all, to supporting the clearing of transaction context
only, to supporting propagation of transactions for serial, or even parallel use. The
ThreadContextProvider for transaction context raises exceptions that are defined by the specification
to indicate lack of support for the various optional aspects of transaction context propagation.

No Support for Transactions

The ManagedExecutor and ThreadContext builders are allowed to raise I1legalStateException from the
build method when a builder is configured to propagate transaction context but transactions are
not supported (no provider of transaction context is available). This follows the general pattern
defined by the build method JavaDoc concerning unavailable context types.

executor = ManagedExecutor.builder()
.propagated(ThreadContext.TRANSACTION)
.cleared(ThreadContext.ALL_REMAINING)
.build(); // <-- raises IllegalStateException

Propagation of the Absence of a Transaction, but not
of Active Transactions

It can be useful to propagate that a completion stage action does not run under a transaction in
order to guarantee deterministic behavior and allow the action to manage its own transactional
work. This is important in being able to write applications that reliably access completion stage
results from within a transaction without risking that the action might run as part of the
transaction. For example,

14

executor = ManagedExecutor.builder()
.propagated(ThreadContext.TRANSACTION, ThreadContext.APPLICATION)
.cleared(ThreadContext.ALL REMAINING)
.build();

// propagates the absence of a transaction,
// allowing the action to start its own transaction
stage1 = executor.supplyAsync(supplier);
stage2 = stagel.thenApply(u -> {
try {
DataSource ds = InitialContext.doLookup("java:comp/env/ds1");
UserTransaction tx = InitialContext.doLookup("java:comp/UserTransaction");
tx.begin();
try (Connection con = ds.getConnection()) {
return u + con.createStatement().executeUpdate(sql);
} finally {
tx.commit();
}
} catch (Exception x) {
throw new CompletionException(x);
}
};

tx.begin();
... do transactional work here

updateCount = stage2.join(); // <-- stage2's action is guaranteed to never
// run under this transaction because absence
// of a transaction is propagated to it

. more transactional work

It should be noted that cleared, rather than propagated, transaction context can accomplish the
same.

A ThreadContextProvider that supports propagation of the absence of a transaction, but not
propagation of an active transaction is allowed to raise IllegalStateException from its
currentContext method. The exception flows back to the application on operations such as
managedExecutor.supplyAsync(supplier), threadContext.withContextCapture, or
threadContext.contextualFunction, indicating the restriction against propagating active
transactions. The I1legalStateException should have a meaningful message making it clear to the
user that lack of support for the propagation of active transactions is the cause of the error.

For example, the application can expect to see I1legalStateException here if the optional behavior
of propagating active transactions to other threads is not supported,

15

tx.begin();
stage = executor.runAsync(action); // <-- raises IllegalStateException

Propagation of Active Transactions for Serial Use, but
not Parallel

Some transaction managers and transactional resources may allow for propagation of an active
transaction to multiple threads serially, with the limitation that the transaction is active on at most
one thread at any given time.

For example,

16

executor = ManagedExecutor.builder()
.propagated(ThreadContext.TRANSACTION)
.build();

// Allowed because it limits the transaction to serial use
stage1 = executor.newIncompleteFuture();
tx.begin();
try {
stage3 = stagel.thenApply(updateCount -> {
try (Connection con = dataSource.getConnection()) {
return updateCount + con.createStatement().executeUpdate(sql2);
} catch (SQLException x) {
throw new CompletionException(x);
}
}).thenApply(updateCount -> {
try (Connection con = dataSource.getConnection()) {
return updateCount + con.createStatement().executeUpdate(sql3);
} catch (SQLException x) {
throw new CompletionException(x);
}
}).whenComplete((result, failure) -> {
try {
if (failure == null && tx.getStatus() == Status.STATUS_ACTIVE)
tx.commit();
else
tx.rollback();
} catch (Exception x) {
if (failure == null)
throw new CompletionException(x);
}
1
} finally {
// vendor-specific means required to obtain TransactionManager instance
transactionManager.suspend();

// ... possibly on another thread
stagel.complete(initialCount);

A 'ThreadContextProvider' that supports serial use of a propagated transaction, but not parallel use,
is allowed to raise IllegalStateException upon attempts to associate a JTA transaction to a second
thread when the JTA transaction is already active on another thread. The transaction context
provider raises IllegalStateException upon ThreadContextSnapshot.begin, which exceptionally
completes the action or task without running it. When rejecting parallel use of a transaction, the
transaction context provider should also mark the transaction for rollback. The
I1legalStateException should have a meaningful message making it clear to the user that lack of
support for the propagation of active transactions for parallel use across multiple threads is the
cause of the error.

17

The application sees the error when requesting the result of the corresponding stage. For example,

tx.begin();
try {
stage = executor.supplyAsync(() -> {
try (Connection con = dataSource.getConnection()) {
return con.createStatement().executeUpdate(sqll);
} catch (SQLException) {
throw new CompletionException(x);
}
1

try (Connection con = dataSource.getConnection()) {
con.createStatement().executeUpdate(sql2);

1

stage.join(); // <-- raises CompletionException with a chained
// I1legalStateException indicating lack of support
// for propagating an active transaction to multiple
// threads

tx.commit();
} catch (Exception x) {
tx.rollback();

Propagation of Active Transactions for Parallel Use

An implementation that supports the optional behavior of propagating active transactions for use
on multiple threads in parallel may choose whether or not to support commit and rollback
operations from dependent stage actions. If unsupported, these operations raise SystemException
when invoked from a separate completion stage action. As always, the application is responsible for
following best practices to ensure transactions are properly resolved and transactional resources
are properly cleaned up under all possible outcomes.

Here is an example of committing the transaction in a dependent stage action,

18

tx.begin();
try {
stage1 = executor.runAsync(actionl);

stage2 = executor.runAsync(action2);
stage3 = stagel.runAfterBoth(stage2, (u,v) -> action3)
.whenComplete((result, failure) -> {
try {

if (failure == null && tx.getStatus() == Status.STATUS_ACTIVE)
tx.comnmit(); // <-- raises SystemException if unsupported within
dependent stage
else
tx.rollback(); // <-- raises SystemException if unsupported within
dependent stage
} catch (Exception x) {
if (failure == null)
throw new CompletionException(x);
}
};
} finally {
// vendor-specific means required to obtain TransactionManager instance
transactionManager.suspend();

Here is an example of committing the transaction from the main thread,

tx.begin();

try {
stage1 = executor.runAsync(action);
stage? = executor.runAsync(action2);
stage3 = CompletableFuture.allOf(stagel, stage2);
stage3.join();
} finally {

if (tx.getStatus() == Status.STATUS_ACTIVE && !stage3.isCompletedExceptionally())
tx.commit();

else
tx.rollback();

MicroProfile Context Propagation Examples

This section includes some additional examples of spec usage.

Contextualize a new CompletableFuture and all
dependent stages

executor = ManagedExecutor.builder()
.cleared(ThreadContext.TRANSACTION, ThreadContext.SECURITY)
.propagated(ThreadContext.ALL_REMAINING)
.build();

CompletableFuture<Long> stagel = executor.newIncompleteFuture();

stagel.thenApply(functionl) // runs with captured context
.thenApply(function2); // runs with captured context

stagel1.completeAsync(supplier1); // runs with captured context

Apply thread context to a CompletionStage and all its
dependent stages

threadContext = ThreadContext.builder()
.propagated(ThreadContext.SECURITY)
.unchanged()
.cleared(ThreadContext.ALL_REMAINING)
.build();

stage = threadContext.withContextCapture
(invokeSomeMethodThatReturnsUnmanagedCompletionStage());
stage.thenApply(function1) // runs with captured context
.thenAccept(consumer); // runs with captured context

Apply thread context to a single CompletionStage
action

20

threadContext = ThreadContext.builder()
.propagated(ThreadContext.SECURITY)
.unchanged()
.cleared(ThreadContext.ALL_REMAINING)
.build();

Consumer<String> contextualConsumer = threadContext.contextualConsumer(s -> {
... do something that requires context

b

stage = invokeSomeMethodThatReturnsUnmanagedCompletionStage();
stage.thenApply(function?) // context is unpredictable
.thenAccept(contextualConsumer); // runs with captured context

Reusable Context Snapshot

threadContext = ThreadContext.builder()
.cleared(ThreadContext.TRANSACTION)
.unchanged(ThreadContext.SECURITY)
.propagated(ThreadContext.ALL_REMAINING)
.build();

contextSnapshot = threadContext.currentContextExecutor();

. on some other thread,
contextSnapshot.execute(() -> {
... do something that requires the previously captured context

)

Run under the transaction of the executing thread

If you do not want to either propagate or clear a context, you need to explicitly mark it as unchanged.
In this example we want to capture and propagate only the application context, but we don’t want
to clear the transaction context because we’re going to manually set it up for the new thread where
we’re going to use the captured application context:

21

22

threadContext = ThreadContext.builder()
.propagated(ThreadContext.APPLICATION)
.unchanged(ThreadContext.TRANSACTION)
.cleared(ThreadContext.ALL_REMAINING)
.build();

Callable<Integer> updateDatabase = threadContext.contextualCallable(() -> {
DataSource ds = InitialContext.doLookup("java:comp/env/ds1");
try (Connection con = ds.getConnection()) {
return con.createStatement().executeUpdate(sql);
}
1)

. on some other thread,

tx.begin();
... do transactional work
// runs as part of the transaction, but with the captured application scope
updateDatabase.call();
. more transactional work
tx.commit();

Thread Context Providers

The initial release of EE Concurrency assumed a single monolithic implementation of the full set of
EE specifications that could thus rely on vendor-specific internals to achieve context propagation.
However, in practice, open source implementations of various specs are often pieced together into
a comprehensive solution.

The thread context provider SPI is defined to bridge the gap, allowing any provider of thread
context to publish and make available the type of thread context it supports, following a standard
and predictable pattern that can be relied upon by a MicroProfile Context Propagation
implementation, enabling it to facilitate the inclusion of any generic thread context alongside the
spec-defined thread context types that it captures and propagates.

With this model, the provider of thread context implements the
org.eclipse.microprofile.context.spi.ThreadContextProvider interface and packages it in a way
that makes it available to the Serviceloader. ThreadContextProvider identifies the thread context
type and provides a way to capture snapshots of thread context as well as for applying
empty/cleared context to threads.

Example

The following is a working example of a thread context provider and related interfaces. The
example context type that it propagates is the priority of a thread. This is chosen, not because it is
useful in any way, but because the concept of thread priority is simple, well understood, and
already built into Java, allowing the reader to focus on the mechanisms of thread context
capture/propagate/restore rather than the details of the context type itself.

ThreadContextProvider

The interface, org.eclipse.microprofile.context.spi.ThreadContextProvider, is the first point of
interaction between the MicroProfile Context Propagation implementation and a thread context
provider. This interface is the means by which the MicroProfile Context Propagation
implementation requests the capturing of a particular context type from the current thread. It also
provides a way to obtain a snapshot of empty/cleared context of this type and identifies the name
by which the user refers to this context type when configuring a ManagedExecutor or ThreadContext.

23

package org.eclipse.microprofile.example.context.priority;

import java.util.Map;
import org.eclipse.microprofile.context.spi.ThreadContextProvider;
import org.eclipse.microprofile.context.spi.ThreadContextSnapshot;

public class ThreadPriorityContextProvider implements ThreadContextProvider {
public String getThreadContextType() {
return "ThreadPriority";

}

public ThreadContextSnapshot currentContext(Map<String, String> props) {
return new ThreadPrioritySnapshot(Thread.currentThread().getPriority());
}

public ThreadContextSnapshot clearedContext(Map<String, String> props) {
return new ThreadPrioritySnapshot(Thread.NORM_PRIORITY);
}

ThreadContextSnapshot

The interface, org.eclipse.microprofile.context.spi.ThreadContextSnapshot, represents a snapshot
of thread context. The MicroProfile Context Propagation implementation can request the context
represented by this snapshot to be applied to any number of threads by invoking the begin method.
An instance of org.eclipse.microprofile.context.spi.ThreadContextController, which is returned by
the begin method, stores the previous context of the thread. The ThreadContextController instance
provided for one-time use by the MicroProfile Context Propagation implementation to restore the
previous context after the context represented by the snapshot is no longer needed on the thread.

24

package org.eclipse.microprofile.example.context.priority;

import java.util.concurrent.atomic.AtomicBoolean;
import org.eclipse.microprofile.context.spi.ThreadContextController;
import org.eclipse.microprofile.context.spi.ThreadContextSnapshot;

public class ThreadPrioritySnapshot implements ThreadContextSnapshot {
private final int priority;

ThreadPrioritySnapshot(int priority) {
this.priority = priority;
}

public ThreadContextController begin() {
Thread thread = Thread.currentThread();
int priorityToRestore = thread.getPriority();
AtomicBoolean restored = new AtomicBoolean();

ThreadContextController contextRestorer = () -> {
if (restored.compareAndSet(false, true))
thread.setPriority(priorityToRestore);
else

throw new IllegalStateException();
¥

thread.setPriority(priority);

return contextRestorer;

ServiceLoader entry

To make the ThreadContextProvider implementation available to the Serviceloader, the provider JAR
includes a file of the following name and location,

META-INF/services/org.eclipse.microprofile.context.spi.ThreadContextProvider

The content of the aforementioned file must be one or more lines, each specifying the fully
qualified name of a ThreadContextProvider implementation that is provided within the JAR file. For
our example context provider, this file consists of the following line:

org.eclipse.microprofile.example.context.priority.ThreadPriorityContextProvider

25

Usage from Application

The following example shows application code that uses a ManagedExecutor that propagates the
example context type. If the provider is implemented correctly and made available on the
application’s thread context class loader, the async Runnable should report that it is running with a
priority of 3.

ManagedExecutor executor = ManagedExecutor.builder()
.propagated("ThreadPriority")
.cleared(ThreadContext.ALL_REMAINING)
.build();
Thread.currentThread().setPriority(3);

executor.runAsync(() -> {
System.out.println("Running with priority of " +
Thread.currentThread().getPriority());
}i

26

Context Manager Provider

A MicroProfile Context Propagation implementation provides an implementation of the
org.eclipse.microprofile.context.spi.ContextManagerProvider interface via either of the following
mechanisms:

* By manually registering the implementation via the static register(ContextManagerProvider)
method. This register returns a ContextManagerProviderRegistration instance which can be used
to unregister.

* Alternately, via the Serviceloader, by including a file of the following name and location: META-
INF/services/org.eclipse.microprofile.context.spi.ContextManagerProvider. The content of the
aforementioned file must a single line specifying the fully qualified name of the
ContextManagerProvider implementation that is provided within the JAR file.

The ContextManagerProvider implementation has one main purpose, which is to supply and
maintain instances of ContextManager per «class loader. This is done via the
getContextManager (ClassLoader) method.

In the case where the ContextManagerProvider is fully integrated with the container, all other
methods of ContextManagerProvider are optional, with their default implementations being
sufficient.

In the case where the ContextManagerProvider implementation is distinct from the container, several
other methods are made available to allow the container to build new instances of ContextManager
(via getContextManagerBuilder), register these instances with the ContextManagerProvider per class
loader (registerContextManager), and unregister these instances when the class loader is no longer
valid (releaseContextManager).

Context Manager

ContextManager’s purpose is to provide builders for ‘ManagedExecutor and ThreadContext. The
builders create instances of ManagedExecutor and ThreadContext where thread context management
is based on the ThreadContextProvider’s that are accessible to the ‘Serviceloader from the class
loader that is associated with the ContextManager instance.

Context Manager Builder

The builder for ContextManager is optional if the ContextManagerProvider is inseparable from the
container, in which case there is no need to provide an implementation.

This builder enables the container to create customized instances of ContextManager for a particular
class loader. The container can choose to have thread context providers loaded from the class
loader (addDiscoveredThreadContextProviders) or manually supply its own
(withThreadContextProviders). Similarly, the container can choose to have extensions loaded from
the class loader (addDiscoveredContextManagerExtensions) or provide its own
(withContextManagerExtensions). The container is responsible for managing registration and
unregistration of all ContextManager instances that it builds.

27

Context Manager Extension

ContextManagerExtension is an optional plugin point that allows you to receive notification upon
creation of each ContextManager. This serves as a convenient invocation point for enabling system
wide context propagator hooks. After creating each ContextManager, the MicroProfile Context
Propagation implementation queries the Serviceloader for implementations of
org.eclipse.microprofile.context.spi.ContextManagerExtension and invokes the setup method of
each.

To register a ContextManagerExtension, a JAR file that is accessible from the class loader associated
with the ContextManager must include a file of the following name and location,

META-INF/services/org.eclipse.microprofile.context.spi.ContextManagerExtension

The content of the aforementioned file must be one or more lines, each specifying the fully
qualified name of a ContextManagerExtension implementation that is provided within the JAR file.

28

Release Notes for MicroProfile Context
Propagation 1.0

MicroProfile Context Propagation Spec PDF MicroProfile Context Propagation Spec HTML
MicroProfile Context Propagation Spec Javadocs

Key features:

* CompletableFuture/CompletionStage implementations with predictable thread context and using
managed threads for async actions

* Ability to contextualize only specific actions/tasks

» Compatibility with EE Concurrency

CDI injection as well as builder pattern

* Configurable via MicroProfile Config

To get started, add this dependency to your project:

<dependency>
<groupId>org.eclipse.microprofile.context-propagation</groupId>
<artifactId>microprofile-context-propagation-api</artifactId>
<version>1.0</version>
<scope>provided</scope>

</dependency>

Use the fluent builder API to construct a ManagedExecutor:

ManagedExecutor executor = ManagedExecutor.builder()
.propagated(ThreadContext.APPLICATION, ThreadContext.CDI)
.cleared(ThreadContext.ALL REMAINING)

.maxAsync(5)
.build();

Then obtain a CompletableFuture or CompletionStage from the ManagedExecutor, and from there use it
the same as Java SE:

CompletableFuture<Integer> cf1 = executor.supplyAsync(supplier?)
.thenApplyAsync(function1)
.thenApply(function2);

Take care to shut down managed executors once the application no longer needs them:

executor.shutdownNow();

29

http://download.eclipse.org/microprofile/microprofile-context-propagation-1.0/microprofile-context-propagation.pdf
http://download.eclipse.org/microprofile/microprofile-context-propagation-1.0/microprofile-context-propagation.html
http://download.eclipse.org/microprofile/microprofile-context-propagation-1.0/apidocs/

Similarly, you can construct ThreadContext instances and use them to more granularly control
thread propagation to individual stages:

ThreadContext secContext = ManagedExecutor.builder()
.propagated(ThreadContext.SECURITY)
.cleared(ThreadContext.TRANSACTION)
.unchanged(ThreadContext.ALL_REMAINING)
.build();

CompletableFuture<Void> stage2 = stagel.thenAccept(secContext.contextualConsumer
(consumer1));

30

	MicroProfile Context Propagation
	Table of Contents
	Microprofile Context Propagation
	MicroProfile Context Propagation Specification
	Introduction
	Motivation
	Solution
	Builders
	Example usage
	Sharing Instances
	Specifying Defaults via MicroProfile Config

	Builders for ManagedExecutor and ThreadContext
	Example ManagedExecutor Builder Usage
	Example ThreadContext Builder Usage
	Reuse of Builders

	CDI Injection
	Example Producer for ManagedExecutor
	Example Producer for ThreadContext

	Establishing default values with MicroProfile Config
	Specifying Defaults for Array Properties in MicroProfile Config

	Overriding values with MicroProfile Config
	Transaction Context
	No Support for Transactions
	Propagation of the Absence of a Transaction, but not of Active Transactions
	Propagation of Active Transactions for Serial Use, but not Parallel
	Propagation of Active Transactions for Parallel Use

	MicroProfile Context Propagation Examples
	Contextualize a new CompletableFuture and all dependent stages
	Apply thread context to a CompletionStage and all its dependent stages
	Apply thread context to a single CompletionStage action
	Reusable Context Snapshot
	Run under the transaction of the executing thread

	Thread Context Providers
	Example
	ThreadContextProvider
	ThreadContextSnapshot
	ServiceLoader entry
	Usage from Application

	Context Manager Provider
	Context Manager
	Context Manager Builder
	Context Manager Extension

	Release Notes for MicroProfile Context Propagation 1.0

