## ----setup, echo=FALSE, message=FALSE----------------------------------------- knitr::opts_chunk$set( collapse = TRUE, screenshot.force = FALSE, comment = "#>" ) library(weibulltools) ## ----dataset_shock, message = FALSE------------------------------------------- shock_tbl <- reliability_data(data = shock, x = distance, status = status) shock_tbl ## ---- data_alloy-------------------------------------------------------------- # Data: alloy_tbl <- reliability_data(data = alloy, x = cycles, status = status) alloy_tbl ## ----RR_weibull, fig.cap = "Figure 1: RR for a two-parametric Weibull distribution.", message = FALSE---- # rank_regression needs estimated failure probabilities: shock_cdf <- estimate_cdf(shock_tbl, methods = "johnson") # Estimating two-parameter Weibull: rr_weibull <- rank_regression(shock_cdf, distribution = "weibull") rr_weibull # Probability plot: weibull_grid <- plot_prob( shock_cdf, distribution = "weibull", title_main = "Weibull Probability Plot", title_x = "Mileage in km", title_y = "Probability of Failure in %", title_trace = "Defectives", plot_method = "ggplot2" ) # Add regression line: weibull_plot <- plot_mod( weibull_grid, x = rr_weibull, title_trace = "Rank Regression" ) weibull_plot ## ----ML_weibull, fig.cap = "Figure 2: ML for a two-parametric Weibull distribution.", message = FALSE---- # Again estimating Weibull: ml_weibull <- ml_estimation( shock_tbl, distribution = "weibull" ) ml_weibull # Add ML estimation to weibull_grid: weibull_plot2 <- plot_mod( weibull_grid, x = ml_weibull, title_trace = "Maximum Likelihood" ) weibull_plot2 ## ----ML_estimation_log-normal, message = FALSE-------------------------------- # Two-parameter log-normal: ml_lognormal <- ml_estimation( alloy_tbl, distribution = "lognormal" ) ml_lognormal # Three-parameter Log-normal: ml_lognormal3 <- ml_estimation( alloy_tbl, distribution = "lognormal3" ) ml_lognormal3 ## ----ML_visualization_I, fig.cap = "Figure 3: ML for a two-parametric log-normal distribution.", message = FALSE---- # Constructing probability plot: tbl_cdf_john <- estimate_cdf(alloy_tbl, "johnson") lognormal_grid <- plot_prob( tbl_cdf_john, distribution = "lognormal", title_main = "Log-normal Probability Plot", title_x = "Cycles", title_y = "Probability of Failure in %", title_trace = "Failed units", plot_method = "ggplot2" ) # Add two-parametric model to grid: lognormal_plot <- plot_mod( lognormal_grid, x = ml_lognormal, title_trace = "Two-parametric log-normal" ) lognormal_plot ## ----ML_visualization_II, fig.cap = "Figure 4: ML for a three-parametric log-normal distribution.", message = FALSE---- # Add three-parametric model to lognormal_plot: lognormal3_plot <- plot_mod( lognormal_grid, x = ml_lognormal3, title_trace = "Three-parametric log-normal" ) lognormal3_plot