## ----setup, echo=FALSE, message=FALSE----------------------------------------- knitr::opts_chunk$set( collapse = TRUE, screenshot.force = FALSE, comment = "#>" ) library(weibulltools) ## ----rank_densities, fig.cap = "Figure 1: Densities for different ranks i in samples of size n = 10.", message = FALSE, warning = FALSE---- library(dplyr) # data manipulation library(ggplot2) # visualization x <- seq(0, 1, length.out = 100) # CDF n <- 10 # sample size i <- c(1, 3, 5, 7, 9) # ranks r <- n - i + 1 # inverse ranking df_dens <- expand.grid(cdf = x, i = i) %>% mutate(n = n, r = n - i + 1, pdf = dbeta(x = x, shape1 = i, shape2 = r)) densplot <- ggplot(data = df_dens, aes(x = cdf, y = pdf, colour = as.factor(i))) + geom_line() + scale_colour_discrete(guide = guide_legend(title = "i")) + theme_bw() + labs(x = "Failure Probability", y = "Density") densplot ## ----dataset_shock, message = FALSE------------------------------------------- shock_tbl <- reliability_data(data = shock, x = distance, status = status) shock_tbl ## ----failure_probabilities---------------------------------------------------- # Estimate CDF with both methods: cdf_tbl <- estimate_cdf(shock_tbl, methods = c("mr", "johnson")) # First case where only failed units are taken into account: cdf_tbl_mr <- cdf_tbl %>% filter(cdf_estimation_method == "mr") cdf_tbl_mr # Second case where both, survived and failed units are considered: cdf_tbl_john <- cdf_tbl %>% filter(cdf_estimation_method == "johnson") cdf_tbl_john ## ----probability_plot_weibull, fig.cap = "Figure 3: Plotting positions in Weibull grid.", message = FALSE---- # Weibull grid for estimated probabilities: weibull_grid <- plot_prob( cdf_tbl, distribution = "weibull", title_main = "Weibull Probability Plot", title_x = "Mileage in km", title_y = "Probability of Failure in %", title_trace = "Method", plot_method = "ggplot2" ) weibull_grid ## ----probability_plot_log-normal, fig.cap = "Figure 4: Plotting positions in log-normal grid.", message = FALSE---- # Log-normal grid for estimated probabilities: lognorm_grid <- plot_prob( cdf_tbl, distribution = "lognormal", title_main = "Log-normal Probability Plot", title_x = "Mileage in km", title_y = "Probability of Failure in %", title_trace = "Method", plot_method = "ggplot2" ) lognorm_grid