## ---- results='hide', message=FALSE, warning=FALSE----------------------- library(varclust) library(mclust) ## ---- warning=FALSE------------------------------------------------------ comp_file_name <- system.file("extdata", "gene.csv", package = "varclust") comp <- read.table(comp_file_name, sep=";", header=T, row.names=1) benchmarkClustering <- c(rep(1, 68), rep(2, 356)) comp <- as.matrix(comp[,-ncol(comp)]) set.seed(2) mlcc.fit <- mlcc.bic(comp, numb.clusters = 1:10, numb.runs = 10, max.dim = 8, greedy = TRUE, estimate.dimensions = TRUE, numb.cores = 1, verbose = FALSE) print(mlcc.fit) plot(mlcc.fit) mclust::adjustedRandIndex(mlcc.fit$segmentation, benchmarkClustering) misclassification(mlcc.fit$segmentation, benchmarkClustering, max(table(benchmarkClustering)), 2) integration(mlcc.fit$segmentation, benchmarkClustering) ## ---- warning=FALSE------------------------------------------------------ mlcc.fit3 <- mlcc.reps(comp, numb.clusters = 2, numb.runs = 0, max.dim = 8, initial.segmentations = list(benchmarkClustering), numb.cores = 1) print(mlcc.fit3) mclust::adjustedRandIndex(mlcc.fit3$segmentation, benchmarkClustering) misclassification(mlcc.fit3$segmentation, benchmarkClustering, max(table(benchmarkClustering)), 2) integration(mlcc.fit3$segmentation, benchmarkClustering)