## ---- echo = FALSE, message = FALSE------------------------------------------- knitr::opts_chunk$set(eval = FALSE,collapse = TRUE,comment = "#") ## ---- eval = TRUE, message = FALSE-------------------------------------------- library(lattice) library(varbvs) ## ---- eval = TRUE------------------------------------------------------------- set.seed(1) ## ----------------------------------------------------------------------------- # load("cd.RData") ## ----------------------------------------------------------------------------- # r <- system.time(fit <- varbvs(X,NULL,y,family = "binomial", # logodds = seq(-6,-3,0.25),n0 = 0) # cat(sprintf("Model fitting took %0.2f minutes.\n",r["elapsed"]/60)) ## ----------------------------------------------------------------------------- # pip <- c(varbvsindep(fit,X,NULL,y)$alpha %*% fit$w) ## ----------------------------------------------------------------------------- # save(list = c("fit","map","pip","r"), # file = "varbvs.demo.cd.RData") ## ----------------------------------------------------------------------------- # print(summary(fit,nv = 9)) ## ---- fig.width = 9,fig.height = 4,fig.align = "center"----------------------- # i <- which(fit$pip > 0.5) # var.labels <- paste0(round(map$pos[i]/1e6,digits = 2),"Mb") # print(plot(fit,groups = map$chr,vars = i,var.labels = var.labels,gap = 7500, # ylab = "posterior prob."), # split = c(1,1,1,2),more = TRUE) # print(plot(fit,groups = map$chr,score = log10(pip + 0.001),vars = i, # var.labels = var.labels,gap = 7500,ylab = "log10 posterior prob."), # split = c(1,2,1,2),more = FALSE)