## ----echo = FALSE------------------------------------------------------------- knitr::opts_chunk$set(message = FALSE, warning = FALSE, fig.height = 5, fig.width = 5) ## ----------------------------------------------------------------------------- library(dplyr) library(unvotes) un_votes ## ----------------------------------------------------------------------------- un_roll_calls ## ----------------------------------------------------------------------------- un_roll_call_issues library(dplyr) count(un_roll_call_issues, issue, sort = TRUE) ## ----joined------------------------------------------------------------------- library(dplyr) joined <- un_votes %>% inner_join(un_roll_calls, by = "rcid") joined ## ----by_country_year, dependson = "joined"------------------------------------ library(lubridate) by_country_year <- joined %>% group_by(year = year(date), country) %>% summarize(votes = n(), percent_yes = mean(vote == "yes")) by_country_year ## ----by_country_year_plot, dependson = "by_country_year"---------------------- library(ggplot2) theme_set(theme_bw()) countries <- c("United States", "United Kingdom", "India", "France") by_country_year %>% filter(country %in% countries) %>% ggplot(aes(year, percent_yes, color = country)) + geom_line() + ylab("% of votes that are 'Yes'") ## ----issue_plot, dependson = "joined", fig.height = 8, fig.width = 8---------- joined %>% filter(country == "United States") %>% inner_join(un_roll_call_issues, by = "rcid") %>% group_by(year = year(date), issue) %>% summarize(votes = n(), percent_yes = mean(vote == "yes")) %>% filter(votes > 5) %>% ggplot(aes(year, percent_yes)) + geom_point() + geom_smooth(se = FALSE) + facet_wrap(~ issue)