tspredit: Time Series Prediction with Integrated Tuning
  Time series prediction is a critical task in data analysis, requiring not only the selection of appropriate models, but also suitable data preprocessing and tuning strategies. 
  TSPredIT (Time Series Prediction with Integrated Tuning) is a framework that provides a seamless integration of data preprocessing, decomposition, model training, hyperparameter optimization, and evaluation. 
  Unlike other frameworks, TSPredIT emphasizes the co-optimization of both preprocessing and modeling steps, improving predictive performance. 
  It supports a variety of statistical and machine learning models, filtering techniques, outlier detection, data augmentation, and ensemble strategies. 
  More information is available in Salles et al. <doi:10.1007/978-3-662-68014-8_2>.
| Version: | 
1.2.747 | 
| Depends: | 
R (≥ 4.1.0) | 
| Imports: | 
stats, DescTools, e1071, elmNNRcpp, FNN, forecast, hht, KFAS, mFilter, nnet, randomForest, wavelets, dplyr, daltoolbox | 
| Published: | 
2025-10-27 | 
| DOI: | 
10.32614/CRAN.package.tspredit | 
| Author: | 
Eduardo Ogasawara  
    [aut, ths, cre],
  Cristiane Gea [aut],
  Diego Carvalho [ctb],
  Diogo Santos [aut],
  Eduardo Bezerra [ctb],
  Esther Pacitti [ctb],
  Fabio Porto [ctb],
  Fernando Alexandrino [aut],
  Rebecca Salles [aut],
  Vitoria Birindiba [aut],
  CEFET/RJ [cph] | 
| Maintainer: | 
Eduardo Ogasawara  <eogasawara at ieee.org> | 
| BugReports: | 
https://github.com/cefet-rj-dal/tspredit/issues | 
| License: | 
MIT + file LICENSE | 
| URL: | 
https://cefet-rj-dal.github.io/tspredit/,
https://github.com/cefet-rj-dal/tspredit | 
| NeedsCompilation: | 
no | 
| Materials: | 
README  | 
| CRAN checks: | 
tspredit results | 
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=tspredit
to link to this page.