Model stacking is an ensemble technique that involves
    training a model to combine the outputs of many diverse statistical
    models, and has been shown to improve predictive performance in a
    variety of settings. 'stacks' implements a grammar for
    'tidymodels'-aligned model stacking.
| Version: | 
1.1.1 | 
| Depends: | 
R (≥ 4.1) | 
| Imports: | 
butcher (≥ 0.1.3), cli, dplyr (≥ 1.1.0), foreach, furrr, future, generics, ggplot2, glmnet, glue, parsnip (≥ 1.2.0), purrr (≥ 1.0.0), recipes (≥ 1.0.10), rlang (≥ 1.1.0), rsample (≥ 1.2.0), stats, tibble (≥ 2.1.3), tidyr, tune (≥
1.2.0), vctrs (≥ 0.6.1), workflows (≥ 1.1.4) | 
| Suggests: | 
covr, h2o, kernlab, kknn, knitr, modeldata, nnet, ranger, rmarkdown, testthat (≥ 3.0.0), workflowsets (≥ 0.1.0), yardstick (≥ 1.1.0) | 
| Published: | 
2025-05-27 | 
| DOI: | 
10.32614/CRAN.package.stacks | 
| Author: | 
Simon Couch [aut, cre],
  Max Kuhn [aut],
  Posit Software, PBC   [cph,
    fnd] | 
| Maintainer: | 
Simon Couch  <simon.couch at posit.co> | 
| BugReports: | 
https://github.com/tidymodels/stacks/issues | 
| License: | 
MIT + file LICENSE | 
| URL: | 
https://stacks.tidymodels.org/,
https://github.com/tidymodels/stacks | 
| NeedsCompilation: | 
no | 
| Materials: | 
README, NEWS  | 
| CRAN checks: | 
stacks results |