## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, echo=TRUE, comment = "#>", warning=FALSE, message=FALSE, fig.width = 7, fig.height = 5 ) ## ----setup, echo=FALSE-------------------------------------------------------- library(rplanes) ## ----message = FALSE---------------------------------------------------------- library(rplanes) library(dplyr) library(purrr) library(ggplot2) ## ----eval=FALSE--------------------------------------------------------------- # hosp_all <- # read.csv(system.file("extdata/observed/hdgov_hosp_weekly.csv", package = "rplanes")) %>% # select(date, location, flu.admits) %>% # mutate(date = as.Date(date)) # # head(hosp_all) ## ----eval = TRUE, echo=FALSE-------------------------------------------------- hosp_all <- read.csv(system.file("extdata/observed/hdgov_hosp_weekly.csv", package = "rplanes")) %>% select(date, location, flu.admits) %>% mutate(date = as.Date(date)) knitr::kable(head(hosp_all)) ## ----------------------------------------------------------------------------- observed_signal <- to_signal(input = hosp_all, outcome = "flu.admits", type = "observed", resolution = "weeks", horizon = NULL) ## ----------------------------------------------------------------------------- prepped_seed <- plane_seed(observed_signal, cut_date = "2022-10-29") ## ----echo=TRUE, eval=FALSE---------------------------------------------------- # forecast_fp <- system.file("extdata/forecast/2022-10-31-SigSci-TSENS.csv", package = "rplanes") # # read.csv(forecast_fp) %>% # head(.) ## ----echo=FALSE, eval=TRUE---------------------------------------------------- forecast_fp <- system.file("extdata/forecast/2022-10-31-SigSci-TSENS.csv", package = "rplanes") read.csv(forecast_fp) %>% head(.) %>% knitr::kable(.) ## ----echo=TRUE, eval=FALSE---------------------------------------------------- # prepped_forecast <- read_forecast(forecast_fp) # # head(prepped_forecast) ## ----echo=FALSE, eval=TRUE---------------------------------------------------- prepped_forecast <- read_forecast(forecast_fp) knitr::kable(head(prepped_forecast)) ## ----------------------------------------------------------------------------- forecast_signal <- prepped_forecast %>% to_signal(., outcome = "flu.admits", type = "forecast", resolution = "weeks", horizon = 4) ## ----------------------------------------------------------------------------- scores <- plane_score(input = forecast_signal, seed = prepped_seed) ## ----echo=TRUE, eval=FALSE---------------------------------------------------- # res <- # scores$scores_summary %>% # map_df(., as_tibble) # # head(res) ## ----echo=FALSE, eval=TRUE---------------------------------------------------- res <- scores$scores_summary %>% map_df(., as_tibble) knitr::kable(head(res)) ## ----fig.align = 'center'----------------------------------------------------- res %>% count(n_flags) %>% mutate(n_flags = as.character(n_flags)) %>% ggplot(aes(n_flags,n)) + geom_col() + labs(x = "Number of flags raised", y = "Count") ## ----eval=FALSE--------------------------------------------------------------- # hosp_pre23 <- # read.csv(system.file("extdata/observed/hdgov_hosp_weekly.csv", package = "rplanes")) %>% # select(date, location, flu.admits) %>% # mutate(date = as.Date(date)) %>% # filter(date < as.Date("2023-01-01")) # # head(hosp_pre23) ## ----eval = TRUE, echo=FALSE-------------------------------------------------- hosp_pre23 <- read.csv(system.file("extdata/observed/hdgov_hosp_weekly.csv", package = "rplanes")) %>% select(date, location, flu.admits) %>% mutate(date = as.Date(date)) %>% filter(date < as.Date("2023-01-01")) knitr::kable(head(hosp_pre23)) ## ----------------------------------------------------------------------------- observed_signal <- to_signal(input = hosp_pre23, outcome = "flu.admits", type = "observed", resolution = "weeks", horizon = NULL) ## ----------------------------------------------------------------------------- prepped_seed <- plane_seed(observed_signal, cut_date = "2022-12-24") ## ----------------------------------------------------------------------------- scores <- plane_score(observed_signal, seed = prepped_seed, components = c("repeat","diff")) ## ----echo=TRUE, eval=FALSE---------------------------------------------------- # res <- # scores$scores_summary %>% # map_df(., as_tibble) # # head(res) ## ----echo=FALSE, eval=TRUE---------------------------------------------------- res <- scores$scores_summary %>% map_df(., as_tibble) knitr::kable(head(res)) ## ----fig.align = 'center'----------------------------------------------------- res %>% count(n_flags) %>% mutate(n_flags = as.character(n_flags)) %>% ggplot(aes(n_flags,n)) + geom_col() + labs(x = "Number of flags raised", y = "Count")