## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(predtools) ## ----------------------------------------------------------------------------- data(dev_data) data(val_data) ## ----echo=FALSE--------------------------------------------------------------- knitr::kable(dev_data[1:7,]) ## ----------------------------------------------------------------------------- reg<-glm(y~sex+age+severity+comorbidity,data=dev_data,family=binomial(link="logit")) summary(reg) ## ----echo=FALSE--------------------------------------------------------------- cfs<-coefficients(reg) str<-paste0(round(cfs[1],4),"+",paste0(round(cfs[-1],4),"*",names(cfs[-1]),collapse="+")) str_risk_model<-gsub("+-","-",str,fixed=T) ## ----------------------------------------------------------------------------- pred<-predict.glm(reg, type='response') library(pROC) dev_roc<-roc(response=dev_data[,'y'], predictor=pred) plot(dev_roc) title("ROC in the development dataset") ## ----------------------------------------------------------------------------- dev_mroc<-mROC(p=pred) ## ----------------------------------------------------------------------------- plot(dev_roc) lines(dev_mroc, col="red") ## ----------------------------------------------------------------------------- pred<-predict.glm(reg,newdata = val_data, type="response") summary(pred) ## ----Comments=FALSE----------------------------------------------------------- val_roc<-roc(response=val_data[,'y'], predictor=pred) plot(val_roc) ## ----------------------------------------------------------------------------- val_mroc<-mROC(p=pred) ## ----------------------------------------------------------------------------- plot(val_roc) lines(val_mroc, col="red") ## ----------------------------------------------------------------------------- res<-mROC_inference(val_data[,'y'],pred) res