## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(predtools) library(magrittr) library(dplyr) library(ggplot2) ## ----------------------------------------------------------------------------- data(dev_data) data(val_data) ## ----echo=FALSE--------------------------------------------------------------- knitr::kable(dev_data[1:7,]) ## ----------------------------------------------------------------------------- reg <- glm(y~sex+age+severity+comorbidity,data=dev_data,family=binomial(link="logit")) summary(reg) ## ----echo=FALSE--------------------------------------------------------------- cfs <- coefficients(reg) str<-paste0(round(cfs[1],4),"+",paste0(round(cfs[-1],4),"*",names(cfs[-1]),collapse="+")) str_risk_model <- gsub("+-", "-", str, fixed = T) ## ----------------------------------------------------------------------------- dev_data$pred <- predict.glm(reg, type = 'response') val_data$pred <- predict.glm(reg, newdata = val_data, type = 'response') calibration_plot(data = dev_data, obs = "y", pred = "pred", title = "Calibration plot for development data", y_lim = c(0, 0.7), x_lim=c(0, 0.7)) calibration_plot(data = val_data, obs = "y", pred = "pred", y_lim = c(0, 1), x_lim=c(0, 1), title = "Calibration plot for validation data", group = "sex")