## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(predtools) ## ----------------------------------------------------------------------------- library(mvtnorm) n <- 1000 mus <- c(-2,3) sigmas <- c(2,4) rho <- 0.7 Sigma <- matrix(c(sigmas[1],rho*sqrt(sigmas[1]*sigmas[2]),rho*sqrt(sigmas[1]*sigmas[2]), sigmas[2]),nrow=2) sim_data <- rmvnorm(n,mean=c(-2,3),sigma = Sigma) ## ----------------------------------------------------------------------------- sample_mus <- apply(sim_data,2,mean) sample_Sigma <- cov(sim_data) sample_rho <- sample_Sigma[1,2]/sqrt(sample_Sigma[1,1]*sample_Sigma[2,2]) EVPI <- predtools::mu_max_trunc_bvn(sample_mus[1], sample_mus[2], sqrt(sample_Sigma[1,1]), sqrt(sample_Sigma[2,2]),sample_rho) - max(c(0,sample_mus))