## ---- echo = TRUE, fig.width = 5, fig.height = 3------------------------- library("pimeta") library("ggplot2") data(sbp, package = "pimeta") # a parametric bootstrap prediction interval piboot <- pima( y = sbp$y, # effect size estimates se = sbp$sigmak, # within studies standard errors B = 25000, # number of bootstrap samples seed = 14142135, # random number seed parallel = 4 # multi-threading ) piboot plot(piboot, base_size = 10, studylabel = sbp$label) ## ---- echo = TRUE-------------------------------------------------------- # Higgins-Thompson-Spiegelhalter prediction interval pima(sbp$y, sbp$sigmak, method = "HTS") ## ---- echo = TRUE, fig.width = 5, fig.height = 3------------------------- m1 <- c(15,12,29,42,14,44,14,29,10,17,38,19,21) n1 <- c(16,16,34,56,22,54,17,58,14,26,44,29,38) m2 <- c( 9, 1,18,31, 6,17, 7,23, 3, 6,12,22,19) n2 <- c(16,16,34,56,22,55,15,58,15,27,45,30,38) dat <- convert_bin(m1, n1, m2, n2, type = "logOR") head(dat, n = 3) pibin <- pima(dat$y, dat$se, seed = 2236067, parallel = 4) print(pibin, digits = 3, trans = "exp") binlabel <- c( "Creytens", "Milo", "Francois and De Nutte", "Deruyttere et al.", "Hannon", "Roesch", "De Nutte et al.", "Hausken and Bestad", "Chung", "Van Outryve et al.", "Al-Quorain et al.", "Kellow et al.", "Yeoh et al.") plot(pibin, digits = 2, base_size = 10, studylabel = binlabel, trans = "exp") ## ---- eval = FALSE------------------------------------------------------- # png("forestplot.png", width = 500, height = 300, family = "Arial") # plot(piboot, digits = 2, base_size = 18, studylabel = sbp$label) # dev.off() ## ---- eval = FALSE------------------------------------------------------- # p <- plot(piboot, digits = 2, base_size = 10, studylabel = sbp$label) # ggsave("forestplot.png", p, width = 5, height = 3, dpi = 150)