## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 7, fig.height = 7 / 1.61, fig.align = "center" ) ## ----setup-------------------------------------------------------------------- library(dplyr) library(tidyr) library(oncomsm) ## ----------------------------------------------------------------------------- mdl <- create_srpmodel( A = define_srp_prior( median_t_q05 = c(1, 4, 12), # shorter time to response than progression median_t_q95 = c(6, 8, 36), # essentially fixed shape: shape_q05 = c(0.99, 0.99, 0.99), shape_q95 = c(1.00, 1.00, 1.00) ) ) plot(mdl, confidence = 0.9) ## ----------------------------------------------------------------------------- tbl_data_interim <- tibble::tribble( ~subject_id, ~t, ~state, "subj1", 1, "stable", "subj1", 5, "stable", "subj2", 1, "stable", "subj2", 5, "stable", "subj3", 1, "stable", "subj3", 5, "stable", "subj4", 1, "stable", "subj4", 5, "stable", "subj5", 0, "stable", "subj5", 1, "response", "subj5", 2, "EOF", "subj6", 0, "stable", "subj6", 6, "progression" ) %>% mutate(group_id = "A") plot_mstate( visits_to_mstate(tbl_data_interim, mdl), mdl, relative_to_sot = FALSE ) ## ----------------------------------------------------------------------------- p_posterior <- parameter_sample_to_tibble( mdl, sample_posterior(mdl, tbl_data_interim) ) %>% filter(parameter == "p") %>% pull(value) hist(p_posterior) summary(p_posterior)