## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(mppR) ## ----geno_data---------------------------------------------------------------- data("USNAM_geno", package = "mppR") dim(USNAM_geno) rownames(USNAM_geno)[1:6] table(substr(rownames(USNAM_geno)[-c(1:6)], 1, 4)) ## ----off_par_geno_data-------------------------------------------------------- geno.off <- USNAM_geno[7:506, ] geno.par <- USNAM_geno[1:6, ] ## ----map_data----------------------------------------------------------------- data("USNAM_map", package = "mppR") head(USNAM_map) map <- USNAM_map ## ----pheno_data--------------------------------------------------------------- data("USNAM_pheno", package = "mppR") head(USNAM_pheno) pheno <- USNAM_pheno cross.ind <- substr(rownames(pheno), 1, 4) ## ----par_per_cross------------------------------------------------------------ par.per.cross <- cbind(unique(cross.ind), rep("B73", 5), rownames(geno.par)[2:6]) par.per.cross ## ----design_connectivity, fig.height = 4, fig.width = 6----------------------- ppc_ex <- cbind(paste0("c", 1:7), c("PA", "PA", "PB", "PA", "PE", "PE", "PG"), c("PB", "PC", "PC", "PD", "PF", "PG", "PF")) design_connectivity(ppc_ex) ## ----create.mppData----------------------------------------------------------- mppData <- create.mppData(geno.off = geno.off, geno.par = geno.par, map = map, pheno = pheno, cross.ind = cross.ind, par.per.cross = par.per.cross) ## ----QC.mppData--------------------------------------------------------------- mppData <- QC.mppData(mppData = mppData, n.lim = 15, MAF.pop.lim = 0.05, MAF.cr.miss = TRUE, mk.miss = 0.1, gen.miss = 0.25, verbose = TRUE) ## ----IBS.mppData-------------------------------------------------------------- mppData <- IBS.mppData(mppData = mppData) ## ----IBD.mppData-------------------------------------------------------------- mppData <- IBD.mppData(mppData = mppData, het.miss.par = TRUE, type = 'RIL', type.mating = 'selfing') ## ----parent_clustering2------------------------------------------------------- data("par_clu", package = "mppR") mppData <- parent_cluster.mppData(mppData = mppData, par.clu = par_clu) ## ----parent_clustering, eval=FALSE, echo=TRUE--------------------------------- # library("clusthaplo") # set.seed(68769) # # mppData <- parent_cluster.mppData(mppData = mppData, method = "clusthaplo", # K = 10, window = 25, plot = FALSE) # # mppData$n.anc ## ----summary_mppData---------------------------------------------------------- summary(mppData) ## ----subset_mppData----------------------------------------------------------- mppData_sub <- subset(x = mppData, mk.list = mppData$map[, 2] == 1, gen.list = sample(mppData$geno.id, 200)) ## ----mpp_proc----------------------------------------------------------------- QTL_proc <- mpp_proc(pop.name = "USNAM", trait.name = "ULA", trait = "ULA", mppData = mppData, Q.eff = "anc", plot.gen.eff = TRUE, N.cim = 2, thre.cof = 3, win.cof = 20, window = 20, thre.QTL = 3, win.QTL = 20, CI = TRUE, drop = 1.5, verbose = FALSE, output.loc = tempdir()) ## ----MQE---------------------------------------------------------------------- MQE <- MQE_proc(pop.name = "USNAM", trait.name = "ULA", mppData = mppData, Q.eff = c("par", "anc", "biall"), window = 20, plot.MQE = TRUE, verbose = FALSE, output.loc = tempdir()) ## ----QTL_effect--------------------------------------------------------------- SIM <- mpp_SIM(mppData = mppData, Q.eff = "anc") cofactors <- QTL_select(Qprof = SIM) CIM <- mpp_CIM(mppData = mppData, Q.eff = "anc", cofactors = cofactors, plot.gen.eff = TRUE) QTL <- QTL_select(Qprof = CIM) gen.eff <- QTL_gen_effects(mppData = mppData, QTL = QTL, Q.eff = "anc") summary(gen.eff, QTL = 1) ## ----QTL_profile, fig.height = 6, fig.width = 10------------------------------ plot(x = CIM, QTL = QTL, type = "l") ## ----gen_eff_plot, fig.height = 6, fig.width = 10----------------------------- plot(x = CIM, gen.eff = TRUE, mppData = mppData, QTL = QTL, Q.eff = "anc") ## ----CV_proc, fig.height = 6, fig.width = 10---------------------------------- set.seed(89341) CV <- mpp_CV(pop.name = "USNAM", trait.name = "ULA", mppData = mppData, Q.eff = "cr", her = 0.4, Rep = 2, k = 5, verbose = FALSE, output.loc = tempdir())