Package 'mmcmcBayes'

November 24, 2025

```
Title Multistage MCMC Method for Detecting DMRs
Version 0.1.0
Description Implements a multi-stage MCMC Bayesian framework for
     detecting differentially methylated regions (DMRs) in epigenetic
     data. It uses Bayesian inference with Alpha-Skew Generalized
     Normal (ASGN) model and support Bayes Factor or Anderson-Darling
     Test for region selection. The methodology is based on Yang (2025)
     <https://www.proquest.com/docview/3218878972>.
License GPL-3
URL https://github.com/zyang1919/mmcmcBayes
BugReports https://github.com/zyang1919/mmcmcBayes/issues
Depends R (>= 4.0.0)
Imports MCMCpack (>= 1.4-0)
Suggests kSamples, testthat (>= 3.0.0), knitr, rmarkdown
Encoding UTF-8
LazyData true
LazyDataCompression xz
RoxygenNote 7.3.3
NeedsCompilation no
Author Zhexuan Yang [aut, cre],
     Duchwan Ryu [aut],
     Feng Luan [aut]
Maintainer Zhexuan Yang <zky5198@psu.edu>
Repository CRAN
Date/Publication 2025-11-24 08:50:13 UTC
```

Type Package

2 asgn_func

Contents

	asgn_func																		2
	cancer_demo																		3
	compare_dmrs																		4
	mmcmcBayes																		5
	normal_demo																		7
	$traceplot_asgn$																		8
Index																			9

asgn_func

ASGN Model Parameter Estimation using MCMC

Description

Estimates parameters (alpha, mu, sigma2) for the ASGN model using Markov Chain Monte Carlo (MCMC) methods. This function can be used for both cancer and normal groups in the multi-stage DMR detection framework, and also as a standalone function for fitting skewed and potentially bimodal data.

Usage

```
asgn_func(
  data,
  priors = NULL,
  mcmc = list(nburn = 5000, niter = 10000, thin = 1),
  seed = NULL,
  return_mcmc = FALSE,
  return_summary = FALSE
)
```

Arguments

data A matrix or vector containing the mean methylation levels (M-values) A list of prior parameters for alpha, mu, and sigma2. If NULL, weakly informapriors tive priors are automatically generated from the data. mcmc A list of MCMC parameters: • nburn: Number of burn-in iterations (default: 5000) • niter: Number of sampling iterations (default: 10000) • thin: Thinning interval (default: 1) Random seed for reproducibility. If NULL, no seed is set. seed Logical indicating whether to return full MCMC samples for diagnostic purreturn_mcmc poses (default: FALSE) Logical indicating whether to return a summary data.frame with parameter estireturn_summary

mates and 95% credible intervals (default: FALSE)

cancer_demo 3

Details

This function implements a Metropolis-Hastings within Gibbs sampler to estimate the parameters of the ASGN distribution, which can model skewed and potentially bimodal data. The algorithm updates alpha and mu using Metropolis-Hastings steps and sigma2 using inverse Gamma sampling.

The ASGN (Alpha-skewed generalized normal) distribution is particularly useful for modeling methylation data that often exhibits skewness and bimodal issue.

Value

A list that may contain the following elements:

- posteriors: Vector of posterior means for alpha, mu, and sigma2 (always present)
- mcmc_samples: List containing full MCMC chains for alpha, mu, and sigma2 (only if return_mcmc = TRUE)
- summary: Data.frame containing parameter estimates with 95% credible intervals (only if return_summary = TRUE)

Author(s)

Zhexuan Yang, Duchwan Ryu, and Feng Luan

See Also

mmcmcBayes for the main DMR detection function, traceplot_asgn for MCMC diagnostic plots

Examples

```
# Generate sample data
set.seed(2021)
dt <- rgamma(1000, shape = 2, rate = 1)
dt <- as.matrix(dt, ncol=1)

result <- asgn_func(dt, return_mcmc = TRUE, return_summary = TRUE)
print(result$summary)</pre>
```

cancer_demo

Cancer Methylation Demo Data

Description

A demonstration dataset containing methylation M-values for cancer samples. Used for testing and examples in the mmcmcBayes package.

Usage

cancer_demo

4 compare_dmrs

Format

A data frame with CpG sites and methylation values.

Source

The first 5000 CpG sites of Chromosome 6 of 450K dataset.

Examples

```
data(cancer_demo)
head(cancer_demo)
```

compare_dmrs

Compare Differentially Methylated Regions (DMRs) from Two Methods

Description

Identifies and analyzes overlapping regions between two sets of differentially methylated regions (DMRs) detected by different methods. Computes overlap percentages to assess consistency between detection approaches.

Usage

```
compare_dmrs(rst1, rst2)
```

Arguments

rst1 A data frame containing the first set of DMR results. Must contain columns:

'Chromosome', 'Start_CpG', and 'End_CpG'.

rst2 A data frame containing the second set of DMR results. Must contain columns:

'Chromosome', 'Start_CpG', and 'End_CpG'.

Details

This function performs comparison of genomic regions between two DMR detection results. It identifies both partial and complete overlaps between regions and calculates overlap percentage by total region size.

Value

A data frame with the following columns:

Chromosome name of the overlapping region

Start_CpG_Method1

Start CpG site from the first method

End_CpG_Method1

End CpG site from the first method

mmcmcBayes 5

```
Start_CpG_Method2
Start CpG site from the second method
End_CpG_Method2
End CpG site from the second method
Overlap_Percentage
Percentage of overlap
Returns NULL if no overlaps are found.
```

Author(s)

Zhexuan Yang, Duchwan Ryu, and Feng Luan

See Also

Related functions in this package: mmcmcBayes for DMR detection using multi-stage MCMC, asgn_func for parameter estimation with ASGN distribution

Examples

```
# Create sample DMR results
dmr_method1 <- data.frame(
   Chromosome = c("chr1", "chr1", "chr2"),
   Start_CpG = c("cg0001", "cg0050", "cg0100"),
   End_CpG = c("cg0020", "cg0070", "cg0150")
)

dmr_method2 <- data.frame(
   Chromosome = c("chr1", "chr2", "chr2"),
   Start_CpG = c("cg0005", "cg0120", "cg0090"),
   End_CpG = c("cg0025", "cg0160", "cg0110")
)

# Compare overlapping regions
overlaps <- compare_dmrs(dmr_method1, dmr_method2)</pre>
```

mmcmcBayes

Multi-stage MCMC Bayesian Method for DMR Detection

Description

This function implements a multi-stage MCMC Bayesian method for detecting differentially methylated regions (DMRs) between cancer and normal groups. It uses the ASGN model for parameter estimation and provides both Bayes Factor and p-value based testing.

6 mmcmcBayes

Usage

```
mmcmcBayes(
  cancer_data,
  normal_data,
  stage = 1,
  max_stages = 3,
  num_splits = 10,
  test = "BF",
  mcmc = NULL,
  priors_cancer = NULL,
  priors_normal = NULL,
  bf_thresholds = NULL,
  pvalue_thresholds = NULL,
  return_mcmc = FALSE
)
```

Arguments

cancer_data A matrix of methylation data for the cancer group (rows: regions, columns:

samples)

normal_data A matrix of methylation data for the normal group (rows: regions, columns:

samples)

stage The starting stage for multi-stage analysis (default: 1)

max_stages Maximum number of stages (default: 3)

num_splits Number of splits for the data in each stage (default: 10)

test Type of test to use: "BF" for Bayes Factor, "pvalue" for p-value (default: "BF")

mcmc A list of MCMC parameters (default: NULL, uses function defaults)

priors_cancer Prior parameters for the cancer group (default: NULL, uses function defaults)
priors_normal Prior parameters for the normal group (default: NULL, uses function defaults)
Bayes Factor thresholds for each stage (default: NULL, uses function defaults)

pvalue_thresholds

p-value thresholds for each stage (default: NULL, uses function defaults)

return_mcmc Logical indicating whether to return MCMC samples for diagnostic purposes

(default: FALSE)

Details

This function implements a multistage MCMC Bayesian approach for DMR detection. It recursively splits genomic regions and applies Bayesian testing. This function supports both Bayes Factor and Anderson-Darling tests for significance assessment. The algorithm begins by analyzing entire chromosomal regions, then recursively splits significant regions into smaller sub-regions for analysis, stopping when either maximum stages reached or no significant differences are detected.

Value

A list containing DMR detection results and, if requested, MCMC samples.

Returns NULL if no significant DMRs are detected.

normal_demo 7

Author(s)

Zhexuan Yang, Duchwan Ryu, and Feng Luan

See Also

Helper functions in this package: asgn_func for parameter estimation, traceplot_asgn for MCMC diagnostics, compare_dmrs for result comparison

Examples

normal_demo

Normal Methylation Demo Data

Description

A demonstration dataset containing methylation M-values for normal samples. Used for testing and examples in the mmcmcBayes package.

Usage

```
normal_demo
```

Format

A data frame with CpG sites and methylation values.

Source

The first 5000 CpG sites of Chromosome 6 of 450K dataset.

8 traceplot_asgn

Examples

```
data(normal_demo)
head(normal_demo)
```

traceplot_asgn

Create Traceplots for MCMC Parameters

Description

Creates traceplots for MCMC parameters (alpha, mu, sigma2) to assess convergence. Users are responsible for setting up their preferred plot layout using par().

Usage

```
traceplot_asgn(mcmc_samples, param = "all", main = NULL)
```

Arguments

mcmc_samples List containing MCMC samples for alpha, mu, and sigma2

param Parameter to plot: "alpha", "mu", "sigma2", or "all" (default: "all")

main Main title for the plot (optional)

Value

No return value, creates base R plots

Examples

Index