## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----warning=FALSE------------------------------------------------------------ library(mixpoissonreg) fit_ml <- mixpoissonreg(daysabs ~ gender + math + prog, method = "ML", data = Attendance, optim_controls = list(maxit=1)) summary(fit_ml) ## ----warning=FALSE------------------------------------------------------------ fit_ml2 <- mixpoissonregML(daysabs ~ gender + math + prog, data = Attendance, optim_controls = list(maxit=1)) summary(fit_ml2) ## ----------------------------------------------------------------------------- identical(coef(fit_ml), coef(fit_ml2)) ## ----warning = FALSE---------------------------------------------------------- fit_ml_prec <- mixpoissonregML(daysabs ~ gender + math + prog | prog, model = "PIG", data = Attendance, optim_controls = list(maxit=1)) autoplot(fit_ml_prec) local_influence_autoplot(fit_ml_prec) lmtest::lrtest(fit_ml_prec) fit_ml_reduced <- mixpoissonregML(daysabs ~ gender + math + prog, model = "PIG", data = Attendance, optim_controls = list(maxit=1)) lmtest::lrtest(fit_ml_prec, fit_ml_reduced) ## ----warning = FALSE---------------------------------------------------------- fit_ml_env <- mixpoissonregML(daysabs ~ gender + math + prog | prog, model = "PIG", envelope = 10, data = Attendance, optim_controls = list(maxit=1)) summary(fit_ml_env) plot(fit_ml_env, which = 2) autoplot(fit_ml_env, which = 2) ## ----------------------------------------------------------------------------- data("Attendance", package = "mixpoissonreg") X = cbind(1, Attendance$math) y = Attendance$daysabs mixpoissonregML.fit(X, y)$coefficients W = X mixpoissonregML.fit(X, y, W)$coefficients