## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 7, fig.height = 5 ) ## ----------------------------------------------------------------------------- library(mfp) str(mfp) ## ----------------------------------------------------------------------------- str(fp) ## ----------------------------------------------------------------------------- data(GBSG) str(GBSG) ## ----------------------------------------------------------------------------- f <- mfp(Surv(rfst, cens) ~ strata(htreat)+age+fp(tumsize)+fp(posnodal)+fp(prm)+fp(esm) +menostat+tumgrad, family = cox, data = GBSG, select=0.05, verbose=TRUE) ## ----------------------------------------------------------------------------- summary(f) ## ----------------------------------------------------------------------------- f$fptable ## ----fig2--------------------------------------------------------------------- vizmfp <- predict(f, type = "terms", terms = "posnodal", seq = list(1:50), ref = list(5)) plot(vizmfp$posnodal$variable, exp(vizmfp$posnodal$contrast), type = "n", log = "y", xlab = "posnodal", ylab = "Hazard Ratio", ylim = c(0.1, 5)) polygon(x = c(vizmfp$posnodal$variable, rev(vizmfp$posnodal$variable)), y = exp(c(vizmfp$posnodal$contrast - 1.96 * vizmfp$posnodal$stderr, rev(vizmfp$posnodal$contrast + 1.96 * vizmfp$posnodal$stderr))), col = "grey", border = NA) grid() lines(vizmfp$posnodal$variable, exp(vizmfp$posnodal$contrast), type = "l", col = 4, lwd = 2) ## ----fig1--------------------------------------------------------------------- pf <- survfit(f$fit) plot(pf, col=c("red","green"), xlab="Time (years)", ylab="Recurrence free survival rate", xscale=365.25)