Package 'mSTEM'

October 13, 2022

Type Package

Title Multiple Testing of Local Extrema for Detection of Change Points

Version 1.0-1

Date 2019-09-1

Author Zhibing He and Dan Cheng

Maintainer Zhibing He <zhibingh@asu.edu>

Description A new approach to detect change points based on smoothing and multiple testing, which is for long data sequence modeled as piecewise constant functions plus stationary Gaussian noise, see Dan Cheng and Armin Schwartzman (2015) <arXiv:1504.06384>.

Depends R (>= 3.1.0)

Imports parallel, foreach, doParallel, latex2exp

URL https://arxiv.org/abs/1504.06384

License GPL-3 Encoding UTF-8 LazyData true RoxygenNote 6.1.1 NeedsCompilation no Repository CRAN

Date/Publication 2019-10-02 10:00:05 UTC

R topics documented:

ch.est	 2
conv	 3
Fdr	 3
fdr.gam	 4
fdrBH	 5
GenDY	 6
GenMu	 6
GenZ	 7

ch.est

Index																																			1	1
	which.peaks	• •	•	•	•••	•	•	• •	•	•	•	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •	1	0
	which.cp			•			•																	•	•						•	•	•			9
	illu.plot						•																•	•	•							•	•			8

ch.est

Estimate s2,lambda2,lambda4,Delta

Description

Estimate s2,lambda2,lambda4,Delta

Usage

ch.est(nu, gamma, size, B = 100)

Arguments

nu	bandwidth of Gaussian kernal applied to White-noise, Whitenoise error if $nu = 0$
gamma	bandwidth of nonparameter smoothing
size	sample size
В	Montelarlo iteration times

Value

a list of s2,lambda2,lambda4,Delta

References

Multiple Testing of Local Extrema for Detection of Change Points https://arxiv.org/abs/ 1504.06384

See Also

which.cp

Examples

ch.est(nu=2,gamma=4,size=1000,B=100)

conv

Compute convolution function using FFT, similar to the function 'conv' in matlab

Description

Compute convolution function using FFT, similar to the function 'conv' in matlab

Usage

conv(u, v, shape = c("same", "full"))

Arguments

u	vector
v	vector
shape	if 'same', return central part of the convolution, the same size as u; or therwise return the whole sequence with size lenth(u)+length(v)-1

Value

a vector of convolution, as specified by shape.

References

Matlab document on 'conv' https://www.mathworks.com/help/matlab/ref/conv.html

Examples

u = c(-1,2,3,-2,0,1,2) v = c(2,4,-1,1) w = conv(u,v,'same')

Fdr

Evaluate performance of estimated change points

Description

Evaluate performance of estimated change points

Usage

Fdr(uh, b, th)

Arguments

uh	a vector of estimated change points locations
b	a scalar of location tolerance, specified by user
th	a vector of true change points locations

Value

a list of vector of FDR and Power

FDR	a scalar of fdr (false discovery rate)
Power	a scalar of power (true positive rate)

See Also

which.cp

Examples

Fdr(uh=c(7,15,32,47),b=4,th=c(10,20,30,40,50))

fdr.gam	Parallel computing fdr and power of change points estimation for dif-
	<i>ferent</i> gamma <i>and</i> nu

Description

Parallel computing fdr and power of change points estimation for different gamma and nu

Usage

fdr.gam(c, mu, Gamma, Nu, b, th, B = 100, level = 0.1, iter = 100)

Arguments

С	number of cpu cores used for parallel computing
mu	a vector of piecewise constant
Gamma	a vector of different gammas
Nu	a vector of different nus
b	a scalar of location tolerance, specified by user
th	a vector of true change points locations
В	Montelarlo iteration times
level	FDR control level
iter	iteration times for each combination of gamma and nu

fdrBH

Value

a list of matrix with the same length as Nu, FDR and Power for different Gamma are displayed within each matrix

Examples

```
size=12000
a = 1
A = a*(1:119)
H = seq(100,11900,100)
mu = GenMu(A,H,size=size)
z = GenZ(nu=2,size=size)
Gamma = seq(1,5,1)
Nu = seq(0,2,0.5)
model = fdr.gam(2,mu,Gamma,Nu,8,H,iter=100)
```

```
fdrBH
```

FDR threshold based on the Benjamini-Hochberg algorithm

Description

FDR threshold based on the Benjamini-Hochberg algorithm

Usage

fdrBH(p, q)

Arguments

р	a vector of p-values
q	False Discovery Rate level

Value

p-value threshold based on independence or positive dependence

See Also

which.cp

Examples

fdrBH(seq(0.01,0.1,0.01),q=0.1)

GenDY

Description

Generate first-order differential of a smoothed sequence Y

Usage

GenDY(mu, z, gamma)

Arguments

mu	a vector of piecewise constant
Z	a vector of stationary Gaussian random error
gamma	bandwidth of nonparameter smoothing

Value

a vector of the differential of Y

See Also

GenMu/GenZ

Examples

mu = GenMu(x=1:10,pos=seq(10,100,10),size=150)
z = GenZ(nu=2,size=150)
GenDY(mu=mu,z=z,gamma=4)

GenMu

Generate a piecewise constant sequence starting from 0

Description

Generate a piecewise constant sequence starting from 0

Usage

GenMu(x, pos, size)

Arguments

х	a vector containing all values of change points
pos	positions of change points, corresponding to x
size	sample size

GenZ

Value

a piecewise constant sequence

See Also

GenDY

Examples

GenMu(x=1:10,pos=seq(10,100,10),size=150)

GenZ	Generate Gaussian autocorrelated random error sequence based on
	White-noise and Gaussian kernal

Description

Generate Gaussian autocorrelated random error sequence based on White-noise and Gaussian kernal

Usage

GenZ(nu, size)

Arguments

nu	bandwidth of Gaussian kernal applied to White-noise, Whitenoise error if $nu = 0$
size	sample size

Value

a vector of random error

See Also

GenDY

Examples

GenZ(nu=2,size=1000)

illu.plot

Description

Illustration plot of the procedure t0 detect change points

Usage

illu.plot(mu, z, gamma, whichcp, b, Tmax, Tmin)

Arguments

mu	a vector of piecewise constant
Z	a vector of stationary Gaussian random error
gamma	bandwidth of nonparameter smoothing
whichcp	output of the function which.cp
b	a scalar of location tolerance, specified by user
Tmax	a vector of true peak locations
Tmin	a vector true valley locations

Value

a figure plot showing detection of change points

Examples

```
set.seed(2019)
L = 1200
A = c(2.8,0,-2.4,0,-3,0.5,3,5,2,0)/1.5
Tmax = c(150,410,680,770,980)
Tmin = c(250,320,550,1000,1100)
H = c(150,250,320,410,550,680,770,980,1000,1100)
mu = GenMu(A,H,L); z = GenZ(nu=2,L)
y1 = GenDY(mu=mu,z=z,gamma=6)
chest = ch.est(nu=2,gamma=6)
chest = ch.est(nu=2,gamma=6,size=L,B=100)
chp= which.cp(y1,chest,level=0.1)
illu.plot(mu,z,gamma=6,chp,b=5,Tmax,Tmin)
```

which.cp

Description

Find locations of change points

Usage

which.cp(y1, chest, level = 0.1)

Arguments

y1	a vector of the differential of sequence Y
chest	output of function ch.est
level	FDR control level

Value

a list of components

peak	a vector of peaks location
vall	a vector of valleys location
pval	a scalar of adjusted p-value based on FDR control
thresh	a scalar of threshold for y1

See Also

ch.est/fdrBH

Examples

```
mu = GenMu(x=1:10,pos=seq(10,100,10),size=150)
z = GenZ(nu=2,size=150)
y1 = GenDY(mu,z,gamma=4)
chest = ch.est(nu=2,gamma=8,size=150,B=100)
which.cp(y1,chest,level=0.1)
```

which.peaks

Description

Find local maxima and minima in a sequence

Usage

which.peaks(x, partial = FALSE, decreasing = FALSE)

Arguments

Х	a vector with maxima or minima
partial	endpoints will be considered if 'true'
decreasing	find local minima if 'true', ortherwise local maxima

Value

a vector of positions of local maxima or minima

Examples

a = 100:1
which.peaks(a*sin(a/3))

Index

ch.est, 2, 9 conv, 3 Fdr, 3 fdr.gam, 4 fdrBH, 5, 9 GenDY, 6, 7 GenMu, 6, 6 GenZ, 6, 7 illu.plot, 8

which.cp, 2, 4, 5, 8, 9 which.peaks, 10