## ----------------------------------------------------------------------------- data("fruits_traits", package = "mFD") knitr::kable(head(fruits_traits), caption = "Species x traits data frame based on the **fruits** dataset") ## ----------------------------------------------------------------------------- data("baskets_fruits_weights", package = "mFD") knitr::kable(as.data.frame(baskets_fruits_weights[1:6, 1:6]), caption = "Species x assemblages matrix based on the **fruits** dataset") ## ----------------------------------------------------------------------------- data("fruits_traits_cat", package = "mFD") knitr::kable(head(fruits_traits_cat), caption = "Traits types based on **fruits & baskets** dataset") ## ----echo = FALSE------------------------------------------------------------- fruits_gower <- mFD::funct.dist( sp_tr = fruits_traits, tr_cat = fruits_traits_cat, metric = "gower", scale_euclid = "noscale", ordinal_var = "classic", weight_type = "equal", stop_if_NA = TRUE) ## ----------------------------------------------------------------------------- baskets_FD2max <- mFD::alpha.fd.hill( asb_sp_w = baskets_fruits_weights, sp_dist = fruits_gower, tau = "max", q = 2) ## ----------------------------------------------------------------------------- baskets_FD2mean <- mFD::alpha.fd.hill( asb_sp_w = baskets_fruits_weights, sp_dist = fruits_gower, tau = "mean", q = 2) ## ----------------------------------------------------------------------------- round(cbind(FD2max = baskets_FD2max$"asb_FD_Hill"[ , 1], FD2mean = baskets_FD2mean$"asb_FD_Hill"[ , 1]), 2) ## ----------------------------------------------------------------------------- # Retrieve species occurrences data: baskets_summary <- mFD::asb.sp.summary(baskets_fruits_weights) baskets_fruits_occ <- baskets_summary$"asb_sp_occ" head(baskets_fruits_occ) # Compute alpha FD Hill with q = 0: baskets_FD0mean <- mFD::alpha.fd.hill( asb_sp_w = baskets_fruits_occ, sp_dist = fruits_gower, tau = "mean", q = 0) round(baskets_FD0mean$"asb_FD_Hill", 2) ## ----------------------------------------------------------------------------- # retrieve total weight per basket: baskets_summary$"asb_tot_w" # Here baskets all contain 2000g of fruits, we illustrate how to compute... # relative weights using the output of asb.sp.summary: baskets_fruits_relw <- baskets_fruits_weights / baskets_summary$"asb_tot_w" apply(baskets_fruits_relw, 1, sum) ## ----------------------------------------------------------------------------- # Compute index: baskets_betaq2 <- mFD::beta.fd.hill( asb_sp_w = baskets_fruits_relw, sp_dist = fruits_gower, q = 2, tau = "mean", beta_type = "Jaccard") # Then use the mFD::dist.to.df function to ease visualizing result mFD::dist.to.df(list_dist = list("FDq2" = baskets_betaq2$"beta_fd_q"$"q2"))