## ----comment = "", message = FALSE, setup, include=FALSE------------------------------------------ options(digits = 3) options(width = 100) ## ----comment = "", message = FALSE---------------------------------------------------------------- set.seed(9487) x <- matrix(rnorm(2000), 200, 10) colnames(x) <- paste0("x", 1:10) y <- matrix(rnorm(200), 200, 1) data_reg <- data.frame(y, x) ## ----comment = "", message = FALSE---------------------------------------------------------------- model_reg <- "y <= x1 + x2 + x3 + x4 y <~ x5 + x6 + x7 + x8 + x9 + x10" ## ----comment = "", message = FALSE---------------------------------------------------------------- library(lslx) lslx_reg <- lslx$new(model = model_reg, data = data_reg) ## ----comment = "", message = FALSE---------------------------------------------------------------- lslx_reg$fit(penalty_method = "lasso", lambda_grid = seq(.00, .30, .01)) ## ----comment = "", message = FALSE, fig.width = 24, fig.height = 14------------------------------- lslx_reg$summarize(selector = "aic") ## ----comment = "", message = FALSE, fig.width = 8, fig.height = 4, dpi=200, out.width=600, out.height=300---- lslx_reg$plot_numerical_condition() ## ----comment = "", message = FALSE, fig.width = 8, fig.height = 4, dpi=200, out.width=600, out.height=300---- lslx_reg$plot_information_criterion() ## ----comment = "", message = FALSE, fig.width = 8, fig.height = 4, dpi=200, out.width=600, out.height=300---- lslx_reg$plot_fit_index() ## ----comment = "", message = FALSE, fig.width = 8, fig.height = 4, dpi=200, out.width=600, out.height=300---- lslx_reg$plot_coefficient(block = "y<-y") ## ----comment = "", message = FALSE, fig.width = 8, fig.height = 4, dpi=300, out.width=600, out.height=300---- lslx_reg$extract_coefficient(selector = "aic") ## ----comment = "", message = FALSE, fig.width = 8, fig.height = 4, dpi=300, out.width=600, out.height=300---- lslx_reg$extract_objective_gradient(selector = "aic", type = "effective")