## ----setupknitr, include = FALSE---------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) load(system.file(file.path("extdata", "environmental_impact_vignette.rda"), package = 'iotables')) ## ----setup, echo=FALSE, message=FALSE----------------------------------------- library(iotables) library(dplyr, quietly=TRUE) library(tidyr, quietly=TRUE) ## ----getiotable, eval=FALSE--------------------------------------------------- # # For faster building this data has been loaded from "../extdata/environmental_impact_vignette.rda" # BE <- iotable_get(source = "naio_10_cp1700", geo = "BE", # year =2015, # labelling = "short", unit = "MIO_EUR", # stk_flow = "TOTAL") ## ----getairpol, eval=FALSE---------------------------------------------------- # # For faster building this data has been loaded from "../extdata/environmental_impact_vignette.rda" # ghg <- airpol_get(airpol="GHG", geo="BE", year=2020, unit="THS_T") ## ----ghgindicators------------------------------------------------------------ be_io <- BE %>% supplementary_add(ghg) ghg_indicator <- input_indicator_create( data_table = be_io, input_row = "GHG_emission") ## ----ghgindicator------------------------------------------------------------- # Only the top 5 is printed, rename, arrange and top_n are tidyverse functions: ghg_indicator %>% vector_transpose_longer( .keep = TRUE ) %>% rename ( GHG_emission_indicator = .data$value ) %>% arrange ( -.data$GHG_emission_indicator ) %>% top_n(5) ## ----getco2indicators, eval=FALSE--------------------------------------------- # co2 <- airpol_get(airpol="CO2", geo="BE", year=2020, unit = "THS_T") ## ----co2indicators------------------------------------------------------------ be_io_c <- BE %>% supplementary_add(co2) co2_indicator <- input_indicator_create ( data_table = be_io_c, input_row = "CO2_emission") # Only the top 5 is printed: co2_indicator %>% vector_transpose_longer( .keep = TRUE ) %>% rename ( CO2_emission_indicator = .data$value ) %>% arrange ( -.data$CO2_emission_indicator ) %>% top_n(5) ## ----getmethaneindicators, eval=FALSE----------------------------------------- # methane <- airpol_get (airpol = "CH4", geo="BE", year = 2020, unit = "THS_T") ## ----methaneindicators-------------------------------------------------------- be_io_m <- BE %>% supplementary_add(methane) methane_indicator <- input_indicator_create ( data_table = be_io_m, input_row = "CH4_emission") # Only the top 5 is printed: methane_indicator %>% vector_transpose_longer( .keep = TRUE ) %>% rename(CH4_emission_indicator = .data$value) %>% arrange(-.data$CH4_emission_indicator) %>% top_n(5) ## ----ghgmultiplier, message=FALSE--------------------------------------------- I_be <- input_coefficient_matrix_create( data_table = BE, digits = 4) %>% leontief_inverse_create() ghg_multipliers <- multiplier_create( input_vector = ghg_indicator, Im = I_be, multiplier_name = "GHG_multiplier", digits = 4 ) # Only the top 5 is printed: ghg_multipliers %>% vector_transpose_longer(.keep = TRUE) %>% rename ( GHG_multiplier = .data$value ) %>% arrange ( -.data$GHG_multiplier ) %>% top_n(5) ## ----savevignettedata, eval=FALSE--------------------------------------------- # save(methane, co2, ghg, BE, file = file.path(".." , "inst", "extdata", "environmental_impact_vignette.rda") )