## ----setup, include = FALSE---------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) options("gu.API.key" = "test") ## ----logan-example, eval=FALSE------------------------------------------- # library(guardianapi) # library(dplyr) # library(lubridate) # library(ggplot2) # # logan_search <- gu_items(query = "profile/brianlogan") # # logan_search$star_rating <- as.numeric(logan_search$star_rating) # # logan_reviews <- logan_search %>% # filter(!is.na(star_rating), # web_publication_date >= as.Date("2002-01-01"), # web_publication_date <= as.Date("2018-12-31")) # # logan_reviews$year <- as.factor(year(logan_reviews$web_publication_date)) # # logan_summary <- logan_reviews %>% # group_by(year, star_rating) %>% # summarise(count = n()) %>% # mutate(perc = count/sum(count)) %>% # ungroup() %>% # mutate(star_rating = factor(star_rating, levels = c(5,4,3,2,1))) # # p_logan <- ggplot(data = logan_summary, # aes(x = year, y = count, group = star_rating)) + # geom_line(aes(colour = star_rating), size = 1, alpha = 0.9) + # scale_colour_viridis_d(name = "Rating") + # labs(x="Year", y="Number of Review with Rating") + # theme(axis.text.x = element_text(angle = 45, vjust=0.5)) # # p_logan # ## ----logan-example-plot, echo=FALSE, out.width = '100%'------------------ knitr::include_graphics("logan-plot.png") ## ----logan-area, eval=FALSE---------------------------------------------- # p_logan_area <- ggplot(data = logan_summary, # aes(x = year, y = perc, group = star_rating)) + # geom_area(aes(fill = star_rating)) + # scale_y_continuous(labels = scales::percent) + # scale_fill_viridis_d(name = "Rating") + # labs(x="Year", y="Number of Review with Rating") + # theme(axis.text.x = element_text(angle = 45, vjust=0.5)) # # # p_logan_area ## ----logan-area-plot, echo=FALSE, out.width = '100%'--------------------- knitr::include_graphics("logan-area.png") ## ----bradshaw-example, eval=FALSE---------------------------------------- # library(dplyr) # library(lubridate) # library(ggplot2) # # bradshaw_search <- gu_items(query = "profile/peterbradshaw") # # bradshaw_search$star_rating <- as.numeric(bradshaw_search$star_rating) # # bradshaw_reviews <- bradshaw_search %>% # filter(!is.na(star_rating), star_rating != 0, # web_publication_date >= as.Date("2002-01-01"), # web_publication_date <= as.Date("2018-12-31")) # # bradshaw_reviews$year <- as.factor(year(bradshaw_reviews$web_publication_date)) # # bradshaw_summary <- bradshaw_reviews %>% # group_by(year, star_rating) %>% # summarise(count = n()) %>% # mutate(perc = count/sum(count)) %>% # ungroup() %>% # mutate(star_rating = factor(star_rating, levels = c(5,4,3,2,1))) # # p_bradshaw <- ggplot(data = bradshaw_summary, # aes(x = year, y = count, group = star_rating)) + # geom_line(aes(colour = star_rating), size = 1, alpha = 0.9) + # scale_colour_viridis_d(name = "Rating") + # labs(x="Year", y="Number of Review with Rating") + # theme(axis.text.x = element_text(angle = 45, vjust=0.5)) # # p_bradshaw # ## ----bradshaw-example-plot, echo=FALSE, out.width = '100%'--------------- knitr::include_graphics("bradshaw-plot.png") ## ----bradshaw-area, eval=FALSE------------------------------------------- # p_bradshaw_area <- ggplot(data = bradshaw_summary, # aes(x = year, y = perc, group = star_rating)) + # geom_area(aes(fill = star_rating)) + # scale_y_continuous(labels = scales::percent) + # scale_fill_viridis_d(name = "Rating") + # labs(x="Year", y="Number of Review with Rating") + # theme(axis.text.x = element_text(angle = 45, vjust=0.5)) # # p_bradshaw_area ## ----bradshaw-area-plot, echo=FALSE, out.width = '100%'------------------ knitr::include_graphics("bradshaw-area.png") ## ----comp-hist, eval=FALSE----------------------------------------------- # # bradshaw_reviews$byline <- "Peter Bradshaw" # # logan_reviews$byline <- "Brian Logan" # # comp_df <- bind_rows(logan_reviews, bradshaw_reviews) %>% # mutate(star_rating = as.numeric(star_rating)) # # comp_df2 <- comp_df %>% # group_by(star_rating, byline) %>% # summarise(count = n()) %>% group_by(byline) %>% # mutate(perc = count/sum(count)) # # comp_p <- ggplot(comp_df, # aes(x = star_rating, y = ..density.., fill = byline)) + # geom_histogram(position="dodge", bins = 5, alpha = 0.5) + # scale_y_continuous(labels = scales::percent) + # scale_fill_viridis_d(end = 0.9, option = "inferno") + # labs(x = "Star Rating", y = "", fill = "") + # theme(legend.position = "bottom") + # geom_line(aes(x = star_rating, y = perc, # colour = byline, group = byline), data = comp_df2, # size = 1) + # scale_colour_viridis_d(end = 0.9, option = "inferno") + # guides(colour = FALSE) # # comp_p ## ----bradshaw-logan-comp, echo=FALSE, out.width = '100%'----------------- knitr::include_graphics("logan-bradshaw-comp.png") ## ----relationships-demo, eval=FALSE-------------------------------------- # relations <- gu_content(query = "relationships", from_date = "2018-11-30", # to_date = "2018-12-30") # # tibble::glimpse(relations) ## ----relations-read, echo=FALSE, message=TRUE, warning=TRUE-------------- relations <- readr::read_rds("relations.rds") relations ## ----relations-sex-demo, eval=FALSE-------------------------------------- # relations_sex <- gu_content(query = "relationships", from_date = "2018-11-30", # to_date = "2018-12-30", tag = "lifeandstyle/sex") # # relations_sex ## ----relations-sex-read, echo=FALSE, message=TRUE, warning=TRUE---------- relations_sex <- readr::read_rds("relations_sex.rds") tibble::glimpse(relations_sex)