## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----------------------------------------------------------------------------- # libraries library(simts) library(gmwmx) ## ---- eval=T, echo=T, message=F----------------------------------------------- phase = 0.45 amplitude = 2.5 sigma2_wn = 15 sigma2_powerlaw = 10 d = 0.4 bias = 0 trend = 5/365.25 cosU = amplitude*cos(phase) sinU = amplitude*sin(phase) ## ---- eval=T, echo=T, message=F----------------------------------------------- n = 5*365 ## ---- eval=F------------------------------------------------------------------ # install.packages("devtools") # devtools::install_github("SMAC-Group/simts") ## ---- eval=F, echo=T, message=F----------------------------------------------- # model_i = WN(sigma2 = sigma2_wn) + PLP(sigma2 = sigma2_powerlaw, d = d) ## ---- eval=T, echo=T, message=F----------------------------------------------- # define time at which there are jumps jump_vec = c(600, 1200) jump_height = c(20, 30) # define myseed myseed=123 ## ---- eval=F, echo=T, message=F----------------------------------------------- # # generate residuals # eps = simts::gen_gts(model = model_i, n= n) ## ---- evaL=T, echo=F---------------------------------------------------------- file_path_eps_simulate_data = system.file("extdata", "eps.rda", package = "gmwmx", mustWork = T) load(file_path_eps_simulate_data) ## ---- eval=T, echo=T, message=F----------------------------------------------- # add trend and sin A = gmwmx::create_A_matrix(t_nogap = 1:length(eps), n_seasonal = 1, jumps = NULL) # define beta x_0 = c(bias, trend, cosU, sinU) # create time series deterministic_signal = A %*% x_0 ## ---- fig.height=8, fig.width=6, fig.align='center'--------------------------- plot(deterministic_signal, type="l") plot(eps) ## ----------------------------------------------------------------------------- # add trend, gaps and sin A = gmwmx::create_A_matrix(t_nogap = 1:length(eps), n_seasonal = 1, jumps = jump_vec) # define beta x_0 = c(bias, trend, cosU, sinU, jump_height) # create time series deterministic_signal = A %*% x_0 ## ---- fig.height=8, fig.width=6, fig.align='center'--------------------------- plot(deterministic_signal, type="l") plot(eps) ## ---- fig.height=8, fig.width=6, fig.align='center'--------------------------- yy = deterministic_signal + eps plot(yy) ## ---- eval=T------------------------------------------------------------------ # save signal in temp gnssts_obj = create.gnssts(t = 1:length(yy), y = yy, jumps = jump_vec) ## ---- eval=T------------------------------------------------------------------ class(gnssts_obj) ## ---- eval=F, echo=T---------------------------------------------------------- # write.gnssts(gnssts_obj, filename = "simulated_data.mom") ## ---- fig.height=8, fig.width=6, fig.align='center'--------------------------- fit_gmwmx = gmwmx::estimate_gmwmx(x = gnssts_obj, model_string = "wn+powerlaw", n_seasonal = 1, theta_0 = c(0.1, 0.1, 0.1), k_iter = 1) fit_gmwmx plot(fit_gmwmx) ## ---- fig.height=8, fig.width=6, fig.align='center'--------------------------- fit_gmwmx_2 = gmwmx::estimate_gmwmx(x = gnssts_obj, model_string = "wn+powerlaw", n_seasonal = 1, theta_0 = c(0.1, 0.1, 0.1), k_iter = 2) fit_gmwmx_2 plot(fit_gmwmx_2) ## ---- eval=F, echo=T---------------------------------------------------------- # fit_mle_hector = gmwmx::estimate_hector(x = gnssts_obj, # model_string = "wn+powerlaw", # n_seasonal = 1 # ) # # ## ---- eval=F, echo=F---------------------------------------------------------- # save(fit_mle_hector,file="fit_mle_hector.rda") ## ---- eval=T, echo=F---------------------------------------------------------- # fit_mle_hector is save in inst/extdata file_path = system.file("extdata", "fit_mle_hector.rda", package = "gmwmx", mustWork = T) load(file = file_path) ## ---- fig.height=8, fig.width=6, fig.align='center'--------------------------- fit_mle_hector plot(fit_mle_hector)