## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = FALSE ) ## ----hiddenlibrary, include = FALSE------------------------------------------- # library(devtools) ## ----devtools----------------------------------------------------------------- # devtools::install_github("betsybersson/fabPrediction") # library(fabPrediction) ## ----cran, eval = FALSE------------------------------------------------------- # install_packages("fabPrediction") # library(fabPrediction) ## ----data--------------------------------------------------------------------- # data(radon) # data(W) ## ----onecounty---------------------------------------------------------------- # y_county9 = radon$radon[radon$group==9] ## ----fabcontinuous------------------------------------------------------------ # fab.region = predictionInterval(y_county9,method = "FAB", # alpha = .15, # mu = 0.5,tau2 = 1) # fab.region$bounds ## ----plotfab, fig.height=4, fig.width = 6,warning=F--------------------------- # plot(fab.region, # main="FAB Prediction Interval For County 9",xlab="log(radon)") ## ----plotdta, fig.height=4, fig.width = 6,warning=F--------------------------- # plot(predictionInterval(y_county9,method = "DTA",alpha = .15), # main="DTA Prediction Interval For County 9",xlab="log(radon)") ## ----parametric,warning=F----------------------------------------------------- # predictionInterval(y_county9,method = "direct",alpha = .15)$bounds # predictionInterval(y_county9,method = "Bayes",alpha = .15, # mu=0.5, tau2=1)$bounds ## ----county9, fig.height=4, fig.width = 6,warning=F--------------------------- # params = fayHerriotEB(9,radon$radon,radon$group,W,X=rep(1,nrow(W))) # plot(predictionInterval(y_county9,method = "FAB",alpha = .15, # mu = params$mu, tau2 = params$tau2), # main="FAB Prediction Interval For County 9 Using Indirect Information", xlab="log(radon)") ## ----catdata------------------------------------------------------------------ # N.groups = c(10,50,75,100,150) # # set.seed(1) # prob = rdirichlet(50:1) # y = t(sapply(N.groups,function(j)rmultinom(1,j,prob))) ## ----group3------------------------------------------------------------------- # y_group3 = y[3,] # fab.set = predictionSet(y_group3,method = "FAB", # gamma = c(50:1)) ## ----group3plot, fig.height=4, fig.width = 6,warning=F------------------------ # plot(fab.set, main = "FAB Prediction Set for Group 3", # cex.axis=.5) ## ----group3directplot, fig.height=4, fig.width = 6,warning=F------------------ # plot(predictionSet(y_group3,method = "direct"), # main = "Direct Prediction Set for Group 3", # cex.axis=.5) ## ----group3bayesplot, fig.height=4, fig.width = 6,warning=F------------------- # plot(predictionSet(y_group3,method = "Bayes",gamma = c(50:1)), # main = "Bayes Prediction Set for Group 3", # cex.axis=.5) ## ----computeMLE, cache=T------------------------------------------------------ # gamma0 = polyaMLE(y[-3,], method="separate") ## ----plotFABcat, fig.height=4, fig.width = 6,warning=F------------------------ # plot(predictionSet(y_group3,method = "FAB",gamma = gamma0), # main = "FAB Prediction Set for Group 3 using Indirect Information", # cex.axis=.5)