## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", message = FALSE, fig.width = 10 ) ## ----load, echo=FALSE, message=FALSE------------------------------------------ library(exuber) options(exuber.show_progress = FALSE) library(dplyr) library(ggplot2) library(tidyr) ## ----options, echo=FALSE------------------------------------------------------ options(exuber.parallel = FALSE) ## ----tstats-cv---------------------------------------------------------------- set.seed(123) sims <- tibble( sim_psy1 = sim_psy1(100), sim_psy2 = sim_psy2(100), sim_evans = sim_blan(100), sim_blan = sim_evans(100), ) # Esimation estimation <- radf(sims, lag = 1) # Critical Values crit_values <- radf_mc_cv(nrow(sims)) ## ----autoplot-basic----------------------------------------------------------- autoplot(estimation, crit_values) ## ----autoplot-color-theme----------------------------------------------------- autoplot(estimation, crit_values) + scale_color_manual(values = c("grey","black")) + theme_classic() ## ----autoplot-shade----------------------------------------------------------- autoplot(estimation, crit_values, shade_opt = shade(fill = "pink", opacity = 0.3)) ## ----join-sets---------------------------------------------------------------- joined <- augment_join(estimation, crit_values) joined ## ----facet-joined------------------------------------------------------------- joined %>% ggplot(aes(x = index)) + geom_line(aes(y = tstat)) + geom_line(aes(y = crit)) + facet_grid(sig + stat ~ id , scales = "free_y") ## ----facet-joined-theme-exuber, warning=FALSE--------------------------------- joined %>% pivot_longer(cols = c("tstat", "crit"), names_to = "nms") %>% ggplot(aes(x = index, y = value, col = nms)) + geom_line() + facet_grid(sig + stat ~ id , scales = "free_y") + scale_exuber_manual() + theme_exuber() ## ----distributions------------------------------------------------------------ distr <- radf_mc_distr(n = 300) autoplot(distr) ## ----ecdf--------------------------------------------------------------------- library(tidyr) distr %>% tidy() %>% rename_all(~ stringr::str_to_upper(.)) %>% gather(Statistic, value, factor_key = TRUE) %>% ggplot(aes(value, color = Statistic)) + stat_ecdf() + ggtitle("Empirical Cumulative Distribution") + geom_hline(yintercept = 0.95, linetype = "dashed") + theme_bw() ## ----lapply-arrange----------------------------------------------------------- library(gridExtra) # To choose only positive series (i.e. statistically significant for 5%) positive_series <- diagnostics(estimation, crit_values)$positive # Through a loop on positive series plot_list1 <- list() for (as in positive_series) { plot_list1[[as]] <- autoplot(estimation, crit_values, select_series = as) } # Alternatively with lapply plot_list2 <- lapply(positive_series, function(x) autoplot(estimation, crit_values, select_series = x)) names(plot_list2) <- positive_series do.call(gridExtra::grid.arrange, plot_list1) ## ----example-old-------------------------------------------------------------- plot_list1[[1]] <- plot_list1[[1]] + theme_classic()