## ----echo=FALSE--------------------------------------------------------------- knitr::opts_chunk$set(fig.width=7) ## ----show=FALSE,message=FALSE------------------------------------------------- library(disbayes) library(dplyr,quietly = TRUE) ihdbristol <- ihdengland %>% filter(area=="Bristol", gender=="Male") ihdbristol %>% filter(between(age, 50, 55)) ## ----eval=TRUE---------------------------------------------------------------- ihdbristol[ihdbristol$age %in% 50:55, ] ## ----------------------------------------------------------------------------- dat <- data.frame(agefrom=seq(0,20,5), ageto=seq(4,24,5), measure=c(15,20,24,35,29)) dat ## ----------------------------------------------------------------------------- if (requireNamespace("tempdisagg")) { disagg_crude <- rep(dat$measure/5, each=5) disagg_smooth <- predict(tempdisagg::td(dat$measure ~ 1, to=5, method="fast")) ageyr <- 0:24 plot(ageyr, disagg_crude, type="l", xlab="Age", ylab="Measure", ylim=c(0,8)) lines(ageyr, disagg_smooth, col="blue") agegroup <- cut(ageyr, seq(0,25,5), right = FALSE) tapply(disagg_smooth, agegroup, sum) } ## ---- eval=TRUE, cache=TRUE, warning=FALSE, message=FALSE--------------------- dbres <- disbayes(data = ihdbristol, age = "age", inc_num = "inc_num", inc_denom = "inc_denom", prev_num = "prev_num", prev_denom = "prev_denom", mort_num = "mort_num", mort_denom = "mort_denom", eqage = 40) ## ---- eval=TRUE, cache=TRUE, warning=FALSE, message=FALSE--------------------- dbresu <- disbayes(data = ihdbristol, age = "age", inc_num = "inc_num", inc_denom = "inc_denom", prev_num = "prev_num", prev_denom = "prev_denom", mort_num = "mort_num", mort_denom = "mort_denom", cf_model = "indep", eqage = 40) ## ----eval=FALSE--------------------------------------------------------------- # options(mc.cores = parallel::detectCores()) # dbresm <- disbayes(data = ihdbristol, age = "age", # inc_num = "inc_num", inc_denom = "inc_denom", # prev_num = "prev_num", prev_denom = "prev_denom", # mort_num = "mort_num", mort_denom = "mort_denom", # method="mcmc", chains=2, iter=1000, # eqage = 40) ## ----eval=FALSE--------------------------------------------------------------- # rstan::traceplot(dbres$fit, pars=paste0("cf[", 60:65, "]")) ## ---- eval=TRUE--------------------------------------------------------------- summ <- tidy(dbres) ## ----eval=TRUE---------------------------------------------------------------- library(dplyr,quietly=TRUE) summ %>% filter(var=="cf", between(age,60,65)) %>% select(age, `25%`, `50%`, `75%`) ## ---- eval=TRUE, warning=FALSE------------------------------------------------ library(ggplot2) plot(dbres) + ylab("Case fatality") + xlab("Age") ## ----warning=FALSE------------------------------------------------------------ summs <- summ %>% filter(var=="cf") summu <- tidy(dbresu) %>% filter(var=="cf") ggplot(summu, aes(x=age)) + geom_pointrange(aes(y=`50%`, ymin=`2.5%`, ymax=`97.5%`), data=summu, col="blue", alpha=0.5) + geom_pointrange(aes(y=`50%`, ymin=`2.5%`, ymax=`97.5%`), data=summ, col="black", alpha=0.5)