
Package ‘ctsmTMB’
August 28, 2025

Type Package

Title Continuous Time Stochastic Modelling using Template Model
Builder

Version 1.0.1

Date 2025-08-27

Description Perform state and parameter inference, and forecasting, in
stochastic state-space systems using the 'ctsmTMB' class. This class,
built with the 'R6' package, provides a user-friendly interface for
defining and handling state-space models. Inference is based on
maximum likelihood estimation, with derivatives efficiently computed
through automatic differentiation enabled by the 'TMB'/'RTMB' packages
(Kristensen et al., 2016) <doi:10.18637/jss.v070.i05>. The available
inference methods include Kalman filters, in addition to a Laplace
approximation-based smoothing method. For further details of these
methods refer to the documentation of the 'CTSMR' package
<https://ctsm.info/ctsmr-reference.pdf> and Thygesen (2025)
<doi:10.48550/arXiv.2503.21358>. Forecasting capabilities include
moment predictions and stochastic path simulations, both implemented
in 'C++' using 'Rcpp' (Eddelbuettel et al., 2018)
<doi:10.1080/00031305.2017.1375990> for computational efficiency.

License GPL-3

URL https://github.com/phillipbvetter/ctsmTMB

BugReports https://github.com/phillipbvetter/ctsmTMB/issues

Depends R (>= 4.0.0)

Imports Deriv, geomtextpath, ggfortify, ggplot2, graphics, grDevices,
Matrix, patchwork, R6, RcppXPtrUtils, RTMB (>= 1.7), stats,
stringr, TMB, utils

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

LinkingTo Rcpp, RcppEigen, zigg

VignetteBuilder knitr

Config/testthat/edition 3

1

https://doi.org/10.18637/jss.v070.i05
https://ctsm.info/ctsmr-reference.pdf
https://doi.org/10.48550/arXiv.2503.21358
https://doi.org/10.1080/00031305.2017.1375990
https://github.com/phillipbvetter/ctsmTMB
https://github.com/phillipbvetter/ctsmTMB/issues


2 ctsmTMB

Copyright See the file COPYRIGHTS

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

NeedsCompilation yes

Author Phillip Vetter [aut, cre, cph],
Jan Møller [ctb],
Uffe Thygesen [ctb],
Peder Bacher [ctb],
Henrik Madsen [ctb]

Maintainer Phillip Vetter <pbrve@dtu.dk>

Repository CRAN

Date/Publication 2025-08-27 22:00:02 UTC

Contents
ctsmTMB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Ornstein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
plot.ctsmTMB.fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
plot.ctsmTMB.pred . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
plot.ctsmTMB.profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
print.ctsmTMB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
print.ctsmTMB.fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
profile.ctsmTMB.fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
summary.ctsmTMB.fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Index 27

ctsmTMB Methods for the ’ctsmTMB’ R6 class

Description

The following public methods are used to construct a stochastic state space model system, consisting
of a set of stochastic differential equations (SDEs), and one or more algebraic observation equations
(AOEs). The AOEs are used to infer information about the value of the (latent) states governed by
the SDEs, and thus must be functions of at least one state.

Value

The function returns an object of class R6 and ctsmTMB, which can be used to define a stochastic
state space system.



ctsmTMB 3

Methods

Public methods:
• ctsmTMB$new()

• ctsmTMB$.private()

• ctsmTMB$getPrivateFields()

• ctsmTMB$addSystem()

• ctsmTMB$addObs()

• ctsmTMB$setVariance()

• ctsmTMB$addInput()

• ctsmTMB$setParameter()

• ctsmTMB$setAlgebraics()

• ctsmTMB$setInitialState()

• ctsmTMB$setInitialVarianceScaling()

• ctsmTMB$setLamperti()

• ctsmTMB$setModelname()

• ctsmTMB$setMAP()

• ctsmTMB$setAdvancedSettings()

• ctsmTMB$getSystems()

• ctsmTMB$getObservations()

• ctsmTMB$getVariances()

• ctsmTMB$getAlgebraics()

• ctsmTMB$getInitialState()

• ctsmTMB$getParameters()

• ctsmTMB$getTimers()

• ctsmTMB$getEstimate()

• ctsmTMB$getLikelihood()

• ctsmTMB$getPrediction()

• ctsmTMB$getSimulation()

• ctsmTMB$filter()

• ctsmTMB$smoother()

• ctsmTMB$estimate()

• ctsmTMB$likelihood()

• ctsmTMB$predict()

• ctsmTMB$simulate()

• ctsmTMB$print()

• ctsmTMB$clone()

Method new(): Initialize private fields

Usage:
ctsmTMB$new()

Method .private(): Extract the private fields of a ctsmTMB model object. Primarily used for
debugging.



4 ctsmTMB

Usage:
ctsmTMB$.private()

Method getPrivateFields(): Extract the private fields of a ctsmTMB model object. Primarily
used for debugging.

Usage:
ctsmTMB$getPrivateFields()

Method addSystem(): Define stochastic differential equation(s) on the form
d<state> ~ f(t,<states>, <inputs>) * dt + g(t, <states>, <inputs>) * dw

Usage:
ctsmTMB$addSystem(form, ...)

Arguments:

form a formula specifying a stochastic differential equation
... additional formulas similar to form for specifying multiple equations at once.

Method addObs(): Define algebraic observation equations on the form
<observation> ~ h(t, <states>, <inputs>) + e)

where h is the observation function, and e is normally distributed noise with zero mean.
This function only specifies the observation name, and its mean through h.

Usage:
ctsmTMB$addObs(form, ..., obsnames = NULL)

Arguments:

form a formula specifying an observation equation
... additional formulas similar to form for specifying multiple equations at once.
obsnames character vector specifying the name of the observation. This is used when the left-

hand side of form consists of more than just a single variable (of class ’call’).

Method setVariance(): Specify the variance of an observation equation.
A defined observation variable y in e.g. addObs(y ~ h(t,<states>,<inputs>) is perturbed by
Gaussian noise with zero mean and variance to-be specified using setVariance(y ~ p(t,<states>,<inputs>).
We can for instance declare setVariance(y ~ sigma_x^2 where sigma_x is a fixed effect param-
eter to be declared through setParameter.

Usage:
ctsmTMB$setVariance(form, ...)

Arguments:

form formula class specifying the observation equation to be added to the system.
... additional formulas identical to form to specify multiple observation equations at a time.

Method addInput(): Declare variables as data inputs
Declare whether a variable contained in system, observation or observation variance equations is
an input variable. If e.g. the system equation contains an input variable u then it is declared using
addInput(u). The input u must be contained in the data.frame .data provided when calling the
estimate or predict methods.



ctsmTMB 5

Usage:
ctsmTMB$addInput(...)

Arguments:

... variable names that specifies the name of input variables in the defined system.

Method setParameter(): Declare which variables that are (fixed effects) parameters in the
specified model, and specify the initial optimizer guess, as well as lower / upper bounds during
optimization. There are two ways to declare parameters:

1. You can declare parameters using formulas i.e. setParameter( theta = c(1,0,10), mu =
c(0,-10,10) ). The first value is the initial value for the optimizer, the second value is the
lower optimization bound and the third value is the upper optimization bound.

2. You can provide a 3-column matrix where rows corresponds to different parameters, and the
parameter names are provided as rownames of the matrix. The columns values corresponds
to the description in the vector format above.

Usage:
ctsmTMB$setParameter(...)

Arguments:

... a named vector or matrix as described above.

Method setAlgebraics(): Add algebraic relations.
Algebraic relations is a convenient way to transform parameters in your equations. In the Ornstein-
Uhlenbeck process the rate parameter theta is always positive, so estimation in the log-domain
is a good idea. Instead of writing exp(theta) directly in the system equation one can transform
into the log domain using the algebraic relation setAlgebraics(theta ~ exp(logtheta)). All
instances of theta is replaced by exp(logtheta) when compiling the C++ function. Note that
you must provide values for logtheta now instead of theta when declaring parameters through
setParameter

Usage:
ctsmTMB$setAlgebraics(form, ...)

Arguments:

form algebraic formula
... additional formulas

Method setInitialState(): Declare the initial state values i.e. mean and covariance for the
system states.

Usage:
ctsmTMB$setInitialState(initial.state)

Arguments:

initial.state a named list of two entries ’x0’ and ’p0’ containing the initial state and covari-
ance of the state.

Method setInitialVarianceScaling(): A scalar value that is multiplied onto the estimated
initial state covariance matrix. The scaling is only applied when the initial state/cov is estimated,
not when it is set by the user.



6 ctsmTMB

Usage:
ctsmTMB$setInitialVarianceScaling(scaling)

Arguments:
scaling a numeric scalar value.

Method setLamperti(): Set a Lamperti Transformation
If the provided system equations have state dependent diffusion in a few available ways then it
is advantageous to perform a transformation to remove the state dependence. This comes at the
cost of a more complicated drift function. The following types of state-dependence is currently
supported

1. ’identity’ - when the diffusion is state-independent (default)
2. ’log’ - when the diffusion is proportional to to x * dw
3. ’logit’ - when the diffusion is proportional to x * (1-x) * dw
4. ’sqrt-logit’ - when the diffusion is proportional to sqrt(x * (1-x)) * dw

Usage:
ctsmTMB$setLamperti(transforms, states = NULL)

Arguments:
transforms character vector - one of either "identity, "log", "logit", "sqrt-logit"
states a vector of the state names for which the specified transformations should be applied

to.

Method setModelname(): Set modelname used to create the C++ file for TMB
When calling TMB::MakeADFun the (negative log) likelihood function is created in the directory
specified by the setCppfilesDirectory method with name <modelname>.cpp

Usage:
ctsmTMB$setModelname(name)

Arguments:
name string defining the model name.

Method setMAP(): Enable maximum a posterior (MAP) estimation.
Adds a maximum a posterior contribution to the (negative log) likelihood function by evaluating
the fixed effects parameters in a multivariate Gaussian with mean and covariance as provided.

Usage:
ctsmTMB$setMAP(mean, cov)

Arguments:
mean mean vector of the Gaussian prior parameter distribution
cov covariance matrix of the Gaussian prior parameter distribution

Method setAdvancedSettings(): Enable maximum a posterior (MAP) estimation.
Adds a maximum a posterior contribution to the (negative log) likelihood function by evaluating
the fixed effects parameters in a multivariate Gaussian with mean and covariance as provided.

Usage:
ctsmTMB$setAdvancedSettings(forceAD = TRUE)



ctsmTMB 7

Arguments:

forceAD a boolean indicating whether to use state space functions that take advantage of the
RTMB::AD(...,force=TRUE) hack which reduces compilation time call to MakeADFun by
20%. This breaks some functionalities such as REPORT.

Method getSystems(): Retrieve system equations.

Usage:
ctsmTMB$getSystems()

Method getObservations(): Retrieve observation equations.

Usage:
ctsmTMB$getObservations()

Method getVariances(): Retrieve observation variances

Usage:
ctsmTMB$getVariances()

Method getAlgebraics(): Retrieve algebraic relations

Usage:
ctsmTMB$getAlgebraics()

Method getInitialState(): Retrieve initially set state and covariance

Usage:
ctsmTMB$getInitialState()

Method getParameters(): Get initial (and estimated) parameters.

Usage:
ctsmTMB$getParameters(type = "all", value = "all")

Arguments:

type one of "all", free" or "fixed" parameters.
value one of "all", initial", "estimate", "lower" or "upper"

Method getTimers(): Retrieve initially timers

Usage:
ctsmTMB$getTimers()

Method getEstimate(): Retrieve initially set state and covariance

Usage:
ctsmTMB$getEstimate()

Method getLikelihood(): Retrieve initially set state and covariance

Usage:
ctsmTMB$getLikelihood()

Method getPrediction(): Retrieve initially set state and covariance



8 ctsmTMB

Usage:
ctsmTMB$getPrediction()

Method getSimulation(): Retrieve initially set state and covariance

Usage:
ctsmTMB$getSimulation()

Method filter(): Perform state filtering (or smoothing for the ’laplace’ method)

Usage:
ctsmTMB$filter(
data,
pars = NULL,
method = "ekf",
ode.solver = "euler",
ode.timestep = diff(data$t),
loss = "quadratic",
loss_c = NULL,
ukf.hyperpars = c(1, 0, 3),
initial.state = self$getInitialState(),
laplace.residuals = FALSE,
estimate.initial.state = FALSE,
use.cpp = FALSE,
silent = FALSE,
...

)

Arguments:

data data.frame containing time-vector ’t’, observations and inputs. The observations can take
NA-values.

pars fixed parameter vector parsed to the objective function for prediction/filtration. The de-
fault parameter values used are the initial parameters provided through setParameter, un-
less the estimate

method character vector specifying the filtering method used for state/likelihood calculations.
Must be one of either "lkf", "ekf", "laplace".

ode.solver Sets the ODE solver used in the Kalman Filter methods for solving the moment
differential equations. The default "euler" is the Forward Euler method, alternatively the
classical 4th order Runge Kutta method is available via "rk4".

ode.timestep numeric value. Sets the time step-size in numerical filtering schemes. The
defined step-size is used to calculate the number of steps between observation time-points
as defined by the provided data. If the calculated number of steps is larger than N.01
where N is an integer, then the time-step is reduced such that exactly N+1 steps is taken
between observations The step-size is used in the two following ways depending on the
chosen method:

1. Kalman filters: The time-step is used as the step-size in the numerical Forward-Euler
scheme to compute the prior state mean and covariance estimate as the final time solution
to the first and second order moment differential equations.



ctsmTMB 9

2. TMB method: The time-step is used as the step-size in the Euler-Maruyama scheme
for simulating a sample path of the stochastic differential equation, which serves to link
together the latent (random effects) states.

loss character vector. Sets the loss function type (only implemented for the kalman filter meth-
ods). The loss function is per default quadratic in the one-step residuals as is natural when
the Gaussian (negative log) likelihood is evaluated, but if the tails of the distribution is con-
sidered too small i.e. outliers are weighted too much, then one can choose loss functions
that accounts for this. The three available types available:

1. Quadratic loss (quadratic).
2. Quadratic-Linear (huber)
3. Quadratic-Constant (tukey)
The cutoff for the Huber and Tukey loss functions are determined from a provided cutoff
parameter loss_c. The implementations of these losses are approximations (pseudo-huber
and sigmoid approximation respectively) for smooth derivatives.

loss_c cutoff value for huber and tukey loss functions. Defaults to c=3

ukf.hyperpars The hyperparameters alpha, beta, and kappa used for sigma points and weights
construction in the Unscented Kalman Filter.

initial.state a named list of two entries ’x0’ and ’p0’ containing the initial state and covari-
ance of the state

laplace.residuals boolean - whether or not to calculate one-step ahead residuals using the
method of oneStepPredict.

estimate.initial.state boolean value. When TRUE the initial state and covariance matri-
ces are estimated as the stationary solution of the linearized mean and covariance differential
equations. When the system contains time-varying inputs, the first element of these is used.

use.cpp a boolean to indicate whether to use C++ to perform calculations
silent logical value whether or not to suppress printed messages such as ’Checking Data’,

’Building Model’, etc. Default behaviour (FALSE) is to print the messages.
... additional arguments

Method smoother(): Perform state filtering (or smoothing for the ’laplace’ method)

Usage:
ctsmTMB$smoother(
data,
pars = NULL,
method = "ekf",
ode.solver = "euler",
ode.timestep = diff(data$t),
loss = "quadratic",
loss_c = NULL,
initial.state = self$getInitialState(),
laplace.residuals = FALSE,
estimate.initial.state = FALSE,
silent = FALSE,
...

)

Arguments:



10 ctsmTMB

data data.frame containing time-vector ’t’, observations and inputs. The observations can take
NA-values.

pars fixed parameter vector parsed to the objective function for prediction/filtration. The de-
fault parameter values used are the initial parameters provided through setParameter, un-
less the estimate

method character vector specifying the filtering method used for state/likelihood calculations.
Must be one of either "lkf", "ekf", "laplace".

ode.solver Sets the ODE solver used in the Kalman Filter methods for solving the moment
differential equations. The default "euler" is the Forward Euler method, alternatively the
classical 4th order Runge Kutta method is available via "rk4".

ode.timestep numeric value. Sets the time step-size in numerical filtering schemes. The
defined step-size is used to calculate the number of steps between observation time-points
as defined by the provided data. If the calculated number of steps is larger than N.01
where N is an integer, then the time-step is reduced such that exactly N+1 steps is taken
between observations The step-size is used in the two following ways depending on the
chosen method:

1. Kalman filters: The time-step is used as the step-size in the numerical Forward-Euler
scheme to compute the prior state mean and covariance estimate as the final time solution
to the first and second order moment differential equations.

2. TMB method: The time-step is used as the step-size in the Euler-Maruyama scheme
for simulating a sample path of the stochastic differential equation, which serves to link
together the latent (random effects) states.

loss character vector. Sets the loss function type (only implemented for the kalman filter meth-
ods). The loss function is per default quadratic in the one-step residuals as is natural when
the Gaussian (negative log) likelihood is evaluated, but if the tails of the distribution is con-
sidered too small i.e. outliers are weighted too much, then one can choose loss functions
that accounts for this. The three available types available:

1. Quadratic loss (quadratic).
2. Quadratic-Linear (huber)
3. Quadratic-Constant (tukey)
The cutoff for the Huber and Tukey loss functions are determined from a provided cutoff
parameter loss_c. The implementations of these losses are approximations (pseudo-huber
and sigmoid approximation respectively) for smooth derivatives.

loss_c cutoff value for huber and tukey loss functions. Defaults to c=3

initial.state a named list of two entries ’x0’ and ’p0’ containing the initial state and covari-
ance of the state

laplace.residuals boolean - whether or not to calculate one-step ahead residuals using the
method of oneStepPredict.

estimate.initial.state boolean value. When TRUE the initial state and covariance matri-
ces are estimated as the stationary solution of the linearized mean and covariance differential
equations. When the system contains time-varying inputs, the first element of these is used.

silent logical value whether or not to suppress printed messages such as ’Checking Data’,
’Building Model’, etc. Default behaviour (FALSE) is to print the messages.

... additional arguments

Method estimate(): Estimate the fixed effects parameters in the specified model.



ctsmTMB 11

Usage:
ctsmTMB$estimate(
data,
method = "ekf",
ode.solver = "euler",
ode.timestep = diff(data$t),
loss = "quadratic",
loss_c = NULL,
ukf.hyperpars = c(1, 0, 3),
initial.state = self$getInitialState(),
trace = 10,
control = list(trace = trace, iter.max = 1e+05, eval.max = 1e+05),
use.hessian = FALSE,
laplace.residuals = FALSE,
unconstrained.optim = FALSE,
estimate.initial.state = FALSE,
silent = FALSE,
compile = FALSE,
...

)

Arguments:
data data.frame containing time-vector ’t’, observations and inputs. The observations can take

NA-values.
method character vector specifying the filtering method used for state/likelihood calculations.

Must be one of either "lkf", "ekf", "laplace".
ode.solver Sets the ODE solver used in the Kalman Filter methods for solving the moment

differential equations. The default "euler" is the Forward Euler method, alternatively the
classical 4th order Runge Kutta method is available via "rk4".

ode.timestep numeric value. Sets the time step-size in numerical filtering schemes. The
defined step-size is used to calculate the number of steps between observation time-points
as defined by the provided data. If the calculated number of steps is larger than N.01
where N is an integer, then the time-step is reduced such that exactly N+1 steps is taken
between observations The step-size is used in the two following ways depending on the
chosen method:

1. Kalman filters: The time-step is used as the step-size in the numerical Forward-Euler
scheme to compute the prior state mean and covariance estimate as the final time solution
to the first and second order moment differential equations.

2. TMB method: The time-step is used as the step-size in the Euler-Maruyama scheme
for simulating a sample path of the stochastic differential equation, which serves to link
together the latent (random effects) states.

loss character vector. Sets the loss function type (only implemented for the kalman filter meth-
ods). The loss function is per default quadratic in the one-step residuals as is natural when
the Gaussian (negative log) likelihood is evaluated, but if the tails of the distribution is con-
sidered too small i.e. outliers are weighted too much, then one can choose loss functions
that accounts for this. The three available types available:

1. Quadratic loss (quadratic).
2. Quadratic-Linear (huber)



12 ctsmTMB

3. Quadratic-Constant (tukey)
The cutoff for the Huber and Tukey loss functions are determined from a provided cutoff
parameter loss_c. The implementations of these losses are approximations (pseudo-huber
and sigmoid approximation respectively) for smooth derivatives.

loss_c cutoff value for huber and tukey loss functions. Defaults to c=3

ukf.hyperpars The hyperparameters alpha, beta, and kappa used for sigma points and weights
construction in the Unscented Kalman Filter.

initial.state a named list of two entries ’x0’ and ’p0’ containing the initial state and covari-
ance of the state

trace integer passed to control which determines number of steps between each print-out
during optimization (use 0 to disable tracing print-outs).

control list of control parameters parsed to nlminb as its control argument. See ?stats::nlminb
for more information

use.hessian boolean value. The default (TRUE) causes the optimization algorithm stats::nlminb
to use the fixed effects hessian of the (negative log) likelihood when performing the opti-
mization. This feature is only available for the kalman filter methods without any random
effects.

laplace.residuals boolean - whether or not to calculate one-step ahead residuals using the
method of oneStepPredict.

unconstrained.optim boolean value. When TRUE then the optimization is carried out un-
constrained i.e. without any of the parameter bounds specified during setParameter.

estimate.initial.state boolean value. When TRUE the initial state and covariance matri-
ces are estimated as the stationary solution of the linearized mean and covariance differential
equations. When the system contains time-varying inputs, the first element of these is used.

silent logical value whether or not to suppress printed messages such as ’Checking Data’,
’Building Model’, etc. Default behaviour (FALSE) is to print the messages.

compile boolean for (re)compiling the objective C++ file, used for methods ending with _cpp.
... additional arguments

Method likelihood(): Construct and extract function handlers for the negative log likelihood
function.
The handlers from TMB’s MakeADFun are constructed and returned. This enables the user to e.g.
choose their own optimization algorithm, or just have more control of the optimization workflow.

Usage:
ctsmTMB$likelihood(
data,
method = "ekf",
ode.solver = "euler",
ode.timestep = diff(data$t),
loss = "quadratic",
loss_c = NULL,
ukf.hyperpars = c(1, 0, 3),
initial.state = self$getInitialState(),
estimate.initial.state = FALSE,
silent = FALSE,
compile = FALSE,



ctsmTMB 13

...
)

Arguments:
data a data.frame containing time-vector ’t’, observations and inputs. The observations can

take NA-values.
method character vector specifying the filtering method used for state/likelihood calculations.

Must be one of either "lkf", "ekf", "laplace".
ode.solver Sets the ODE solver used in the Kalman Filter methods for solving the moment

differential equations. The default "euler" is the Forward Euler method, alternatively the
classical 4th order Runge Kutta method is available via "rk4".

ode.timestep the time-step used in the filtering schemes. The time-step has two different uses
depending on the chosen method.

1. Kalman Filters: The time-step is used when numerically solving the moment differential
equations.

2. Laplace Approximation: The time-step is used in the Euler-Maruyama simulation scheme
for simulating a sample path of the stochastic differential equation, which serves to link
together the latent (random effects) states.

The defined step-size is used to calculate the number of steps between observation time-
points as defined by the provided data. If the calculated number of steps is larger than
N.01 where N is an integer, then the time-step is reduced such that exactly N+1 steps is
taken between observations The step-size is used in the two following ways depending on
the chosen method:

1. Kalman filters: The time-step is used as the step-size in the numerical Forward-Euler
scheme to compute the prior state mean and covariance estimate as the final time solution
to the first and second order moment differential equations.

2. TMB method: The time-step is used as the step-size in the Euler-Maruyama scheme
for simulating a sample path of the stochastic differential equation, which serves to link
together the latent (random effects) states.

loss character vector. Sets the loss function type (only implemented for the kalman filter meth-
ods). The loss function is per default quadratic in the one-step residuals as is natural when
the Gaussian (negative log) likelihood is evaluated, but if the tails of the distribution is con-
sidered too small i.e. outliers are weighted too much, then one can choose loss functions
that accounts for this. The three available types available:

1. Quadratic loss (quadratic).
2. Quadratic-Linear (huber)
3. Quadratic-Constant (tukey)
The cutoff for the Huber and Tukey loss functions are determined from a provided cutoff
parameter loss_c. The implementations of these losses are approximations (pseudo-huber
and sigmoid approximation respectively) for smooth derivatives.

loss_c cutoff value for huber and tukey loss functions. Defaults to c=3

ukf.hyperpars The hyperparameters alpha, beta, and kappa used for sigma points and weights
construction in the Unscented Kalman Filter.

initial.state a named list of two entries ’x0’ and ’p0’ containing the initial state and covari-
ance of the state

estimate.initial.state boolean value. When TRUE the initial state and covariance matri-
ces are estimated as the stationary solution of the linearized mean and covariance differential
equations. When the system contains time-varying inputs, the first element of these is used.



14 ctsmTMB

silent logical value whether or not to suppress printed messages such as ’Checking Data’,
’Building Model’, etc. Default behaviour (FALSE) is to print the messages.

compile boolean for (re)compiling the objective C++ file, used for methods ending with _cpp.
... additional arguments

Method predict(): Perform prediction/filtration to obtain state mean and covariance estimates.
The predictions are obtained by solving the moment equations n.ahead steps forward in time
when using the current step posterior state estimate as the initial condition.

Usage:
ctsmTMB$predict(
data,
pars = NULL,
method = "ekf",
ode.solver = "euler",
ode.timestep = diff(data$t),
k.ahead = nrow(data) - 1,
return.k.ahead = 0:k.ahead,
return.covariance = TRUE,
initial.state = self$getInitialState(),
estimate.initial.state = private$estimate.initial,
use.cpp = FALSE,
silent = FALSE,
...

)

Arguments:
data data.frame containing time-vector ’t’, observations and inputs. The observations can take

NA-values.
pars fixed parameter vector parsed to the objective function for prediction/filtration. The de-

fault parameter values used are the initial parameters provided through setParameter, un-
less the estimate function has been run, then the default values will be those at the found
optimum.

method The prediction method
ode.solver Sets the ODE solver used in the Kalman Filter methods for solving the moment

differential equations. The default "euler" is the Forward Euler method, alternatively the
classical 4th order Runge Kutta method is available via "rk4".

ode.timestep numeric value. Sets the time step-size in numerical filtering schemes. The
defined step-size is used to calculate the number of steps between observation time-points
as defined by the provided data. If the calculated number of steps is larger than N.01
where N is an integer, then the time-step is reduced such that exactly N+1 steps is taken
between observations The step-size is used in the two following ways depending on the
chosen method:

1. Kalman filters: The time-step is used as the step-size in the numerical Forward-Euler
scheme to compute the prior state mean and covariance estimate as the final time solution
to the first and second order moment differential equations.

2. TMB method: The time-step is used as the step-size in the Euler-Maruyama scheme
for simulating a sample path of the stochastic differential equation, which serves to link
together the latent (random effects) states.



ctsmTMB 15

k.ahead integer specifying the desired number of time-steps (as determined by the provided
data time-vector) for which predictions are made (integrating the moment ODEs forward in
time without data updates).

return.k.ahead numeric vector of integers specifying which n.ahead predictions to that should
be returned.

return.covariance boolean value to indicate whether the covariance (instead of the correla-
tion) should be returned.

initial.state a named list of two entries ’x0’ and ’p0’ containing the initial state and covari-
ance of the state

estimate.initial.state bool - stationary estimation of initial mean and covariance
use.cpp a boolean to indicate whether to use C++ to perform calculations
silent logical value whether or not to suppress printed messages such as ’Checking Data’,

’Building Model’, etc. Default behaviour (FALSE) is to print the messages.
... additional arguments

Returns: A data.frame that contains for each time step the posterior state estimate at that
time.step (k = 0), and the prior state predictions (k = 1,...,n.ahead). If return.covariance
= TRUE then the state covariance/correlation matrix is returned, otherwise only the marginal
variances are returned.

Method simulate(): Perform prediction/filtration to obtain state mean and covariance esti-
mates. The predictions are obtained by solving the moment equations n.ahead steps forward in
time when using the current step posterior state estimate as the initial condition.

Usage:
ctsmTMB$simulate(
data,
pars = NULL,
use.cpp = FALSE,
cpp.seed = NULL,
method = "ekf",
ode.solver = "rk4",
ode.timestep = diff(data$t),
simulation.timestep = diff(data$t),
k.ahead = nrow(data) - 1,
return.k.ahead = 0:k.ahead,
n.sims = 100,
initial.state = self$getInitialState(),
estimate.initial.state = private$estimate.initial,
silent = FALSE,
...

)

Arguments:
data data.frame containing time-vector ’t’, observations and inputs. The observations can take

NA-values.
pars fixed parameter vector parsed to the objective function for prediction/filtration. The de-

fault parameter values used are the initial parameters provided through setParameter, un-
less the estimate function has been run, then the default values will be those at the found
optimum.



16 ctsmTMB

use.cpp a boolean to indicate whether to use C++ to perform calculations
cpp.seed an integer seed value to control RNG normal draws on the C++ side.
method 1. The natural TMB-style formulation where latent states are considered random effects

and are integrated out using the Laplace approximation. This method only yields the
gradient of the (negative log) likelihood function with respect to the fixed effects for
optimization. The method is slower although probably has some precision advantages,
and allows for non-Gaussian observation noise (not yet implemented). One-step / K-step
residuals are not yet available in the package.

2. (Continuous-Discrete) Extended Kalman Filter where the system dynamics are linearized
to handle potential non-linearities. This is computationally the fastest method.

3. (Continuous-Discrete) Unscented Kalman Filter. This is a higher order non-linear Kalman
Filter which improves the mean and covariance estimates when the system display high
nonlinearity, and circumvents the necessity to compute the Jacobian of the drift and ob-
servation functions.

All package features are currently available for the kalman filters, while TMB is limited to
parameter estimation. In particular, it is straight-forward to obtain k-step-ahead predictions
with these methods (use the predict S3 method), and stochastic simulation is also available
in the cases where long prediction horizons are sought, where the normality assumption will
be inaccurate

ode.solver Sets the ODE solver used in the Kalman Filter methods for solving the moment
differential equations. The default "euler" is the Forward Euler method, alternatively the
classical 4th order Runge Kutta method is available via "rk4".

ode.timestep numeric value. Sets the time step-size in numerical filtering schemes. The
defined step-size is used to calculate the number of steps between observation time-points
as defined by the provided data. If the calculated number of steps is larger than N.01
where N is an integer, then the time-step is reduced such that exactly N+1 steps is taken
between observations The step-size is used in the two following ways depending on the
chosen method:

1. Kalman filters: The time-step is used as the step-size in the numerical Forward-Euler
scheme to compute the prior state mean and covariance estimate as the final time solution
to the first and second order moment differential equations.

2. TMB method: The time-step is used as the step-size in the Euler-Maruyama scheme
for simulating a sample path of the stochastic differential equation, which serves to link
together the latent (random effects) states.

simulation.timestep timestep used in the euler-maruyama scheme
k.ahead integer specifying the desired number of time-steps (as determined by the provided

data time-vector) for which predictions are made (integrating the moment ODEs forward in
time without data updates).

return.k.ahead numeric vector of integers specifying which n.ahead predictions to that should
be returned.

n.sims number of simulations
initial.state a named list of two entries ’x0’ and ’p0’ containing the initial state and covari-

ance of the state
estimate.initial.state bool - stationary estimation of initial mean and covariance
silent logical value whether or not to suppress printed messages such as ’Checking Data’,

’Building Model’, etc. Default behaviour (FALSE) is to print the messages.



ctsmTMB 17

... additional arguments
return.covariance boolean value to indicate whether the covariance (instead of the correla-

tion) should be returned.

Returns: A data.frame that contains for each time step the posterior state estimate at that
time.step (k = 0), and the prior state predictions (k = 1,...,n.ahead). If return.covariance
= TRUE then the state covariance/correlation matrix is returned, otherwise only the marginal
variances are returned.

Method print(): Function to print the model object

Usage:
ctsmTMB$print()

Method clone(): The objects of this class are cloneable with this method.

Usage:
ctsmTMB$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

library(ctsmTMB)
model <- ctsmTMB$new()

# adding a single system equations
model$addSystem(dx ~ theta * (mu+u-x) * dt + sigma_x*dw)

# adding an observation equation and setting variance
model$addObs(y ~ x)
model$setVariance(y ~ sigma_y^2)

# add model input
model$addInput(u)

# add parameters
model$setParameter(

theta = c(initial = 1, lower=1e-5, upper=50),
mu = c(initial=1.5, lower=0, upper=5),
sigma_x = c(initial=1, lower=1e-10, upper=30),
sigma_y = 1e-2

)

# set the model initial state
model$setInitialState(list(1,1e-1))

# extract the likelihood handlers
nll <- model$likelihood(data=Ornstein)

# calculate likelihood, gradient and hessian w.r.t parameters
nll$fn(nll$par)
nll$gr(nll$par)



18 plot.ctsmTMB.fit

nll$he(nll$par)

# estimate the parameters using an extended kalman filter
fit <- model$estimate(data=Ornstein)

# perform moment predictions
pred <- model$predict(data=Ornstein)

# perform stochatic simulations
sim <- model$simulate(data=Ornstein, n.sims=10)

Ornstein Sample from a simulated Ornstein-Uhlenbeck process with time-
dependent mean

Description

The data was simulated using a standard Euler-Maruyama method.

The simulated process is governed by the SDE #’ dx ~ theta * (mu + u - x) * dt + sigma_x * dw

The parameters used for simulation were theta = 2, mu = 0.5, sigma_x = 1.358, sigma_y = 1e-8

The simulation time-step was 1e-3, and observation time-step 1e-1. The simulation was taken from
t = 0..20

Usage

Ornstein

Format

A data frame of 201 rows and 3 columns. The columns represent the variables: t (time), y (obser-
vation) and u (input).

plot.ctsmTMB.fit This function creates residual plots for an estimated ctsmTMB object

Description

This function creates residual plots for an estimated ctsmTMB object



plot.ctsmTMB.fit 19

Usage

## S3 method for class 'ctsmTMB.fit'
plot(
x,
print.plot = 1,
type = "residuals",
state.type = "prior",
against.obs = NULL,
ggtheme = getggplot2theme(),
ylims = c(NA, NA),
residual.burnin = 0L,
residual.vs.obs.and.inputs = FALSE,
...

)

Arguments

x A R6 ctsmTMB fit object

print.plot a single integer determining which element out of all states/observations (de-
pending on the argument to type).

type a character vector either ’residuals’ or ’states’ determining what to plot.

state.type a character vector either ’prior’, ’posterior’ or ’smoothed’ determining what kind
of states to plot.

against.obs name of an observation to plot state predictions against.

ggtheme ggplot2 theme to use for creating the ggplot.

ylims limits on the y-axis for residual time-series plot
residual.burnin

integer N to remove the first N residuals
residual.vs.obs.and.inputs

the residual plots also include a new window with time-series plots of residuals,
associated observations and inputs

... additional arguments

Value

a (list of) ggplot residual plot(s)

Examples

library(ctsmTMB)
model <- ctsmTMB$new()

# create model
model$addSystem(dx ~ theta * (mu+u-x) * dt + sigma_x*dw)
model$addObs(y ~ x)
model$setVariance(y ~ sigma_y^2)
model$addInput(u)



20 plot.ctsmTMB.pred

model$setParameter(
theta = c(initial = 1, lower=1e-5, upper=50),
mu = c(initial=1.5, lower=0, upper=5),
sigma_x = c(initial=1, lower=1e-10, upper=30),
sigma_y = 1e-2

)
model$setInitialState(list(1,1e-1))

# fit model to data
fit <- model$estimate(Ornstein)

# plot residuals
## Not run: plot(fit)

# plot filtered states
## Not run: plot(fit, type="states")

plot.ctsmTMB.pred Plot of k-step predictions from a ctsmTMB prediction object

Description

Plot of k-step predictions from a ctsmTMB prediction object

Usage

## S3 method for class 'ctsmTMB.pred'
plot(
x,
y,
k.ahead = unique(x[["states"]][["k.ahead"]]),
state.name = NULL,
type = "states",
against = NULL,
...

)

Arguments

x a ctsmTMB.pred object

y not used

k.ahead an integer indicating which k-ahead predictions to plot

state.name a string indicating which states to plot

type one of ’states’ or ’observations’, to plot

against name of an observations to plot predictions against

... additional arguments



plot.ctsmTMB.profile 21

Value

A plot of predicted states

Examples

library(ctsmTMB)
model <- ctsmTMB$new()

# create model
model$addSystem(dx ~ theta * (mu+u-x) * dt + sigma_x*dw)
model$addObs(y ~ x)
model$setVariance(y ~ sigma_y^2)
model$addInput(u)
model$setParameter(

theta = c(initial = 1, lower=1e-5, upper=50),
mu = c(initial=1.5, lower=0, upper=5),
sigma_x = c(initial=1, lower=1e-10, upper=30),
sigma_y = 1e-2

)
model$setInitialState(list(1,1e-1))

# fit model to data
fit <- model$estimate(Ornstein)

# perform moment predictions
pred <- model$predict(Ornstein)

# plot the k.ahead=10 predictions
plot(pred, against="y.data")

# plot filtered states
plot(fit, type="states", against="y")

plot.ctsmTMB.profile #’ Plot a profile likelihood ctsmTMB object

Description

#’ Plot a profile likelihood ctsmTMB object

Usage

## S3 method for class 'ctsmTMB.profile'
plot(x, y, include.opt = TRUE, ...)



22 print.ctsmTMB

Arguments

x a profile.ctsmTMB object

y not in use

include.opt boolean which indicates whether or not to include the total likelihood optimizer
in the plot.

... additional arguments

Examples

library(ctsmTMB)
model <- ctsmTMB$new()

# create model
model$addSystem(dx ~ theta * (mu+u-x) * dt + sigma_x*dw)
model$addObs(y ~ x)
model$setVariance(y ~ sigma_y^2)
model$addInput(u)
model$setParameter(

theta = c(initial = 1, lower=1e-5, upper=50),
mu = c(initial=1.5, lower=0, upper=5),
sigma_x = c(initial=1, lower=1e-10, upper=30),
sigma_y = 1e-2

)
model$setInitialState(list(1,1e-1))

# fit model to data
fit <- model$estimate(Ornstein)

# calculate profile likelihood
out <- profile(fit,parlist=list(theta=NULL))

# plot profile
plot(out)

print.ctsmTMB Basic print of ctsmTMB objects

Description

Basic print of ctsmTMB objects

Usage

## S3 method for class 'ctsmTMB'
print(x, ...)



print.ctsmTMB.fit 23

Arguments

x an object of class ’ctsmTMB’

... additional arguments (not in use)

Value

Print of ctsmTMB model object

Examples

library(ctsmTMB)
model <- ctsmTMB$new()

# print empty model
print(model)

# add elements to model and see new print
model$addSystem(dx ~ theta * (mu+u-x) * dt + sigma_x*dw)
model$addObs(y ~ x)
model$setVariance(y ~ sigma_y^2)
model$addInput(u)
model$setParameter(

theta = c(initial = 1, lower=1e-5, upper=50),
mu = c(initial=1.5, lower=0, upper=5),
sigma_x = c(initial=1, lower=1e-10, upper=30),
sigma_y = 1e-2

)
print(model)

print.ctsmTMB.fit Basic print of objects ctsmTMB fit objects

Description

Basic print of objects ctsmTMB fit objects

Usage

## S3 method for class 'ctsmTMB.fit'
print(x, ...)

Arguments

x a ctsmTMB fit object

... additional arguments

Value

Print of ctsmTMB fit object



24 profile.ctsmTMB.fit

Examples

library(ctsmTMB)
model <- ctsmTMB$new()

# create model
model$addSystem(dx ~ theta * (mu+u-x) * dt + sigma_x*dw)
model$addObs(y ~ x)
model$setVariance(y ~ sigma_y^2)
model$addInput(u)
model$setParameter(

theta = c(initial = 1, lower=1e-5, upper=50),
mu = c(initial=1.5, lower=0, upper=5),
sigma_x = c(initial=1, lower=1e-10, upper=30),
sigma_y = 1e-2

)
model$setInitialState(list(1,1e-1))

# fit model to data
fit <- model$estimate(Ornstein)

# print fit
print(fit)

profile.ctsmTMB.fit #’ Performs full multi-dimensional profile likelihood calculations

Description

#’ Performs full multi-dimensional profile likelihood calculations

Usage

## S3 method for class 'ctsmTMB.fit'
profile(
fitted,
parlist,
grid.size = rep(10, length(parlist)),
grid.qnt = rep(3, length(parlist)),
hessian = FALSE,
silent = FALSE,
control = list(trace = 0, iter.max = 1000, eval.max = 1000),
...

)

Arguments

fitted a ctmsTMB fit object



summary.ctsmTMB.fit 25

parlist a named-list of parameters to profile over. The user can either supply grid-values
in the list or leave it empty. If the any one list is empty then grid-values will be
calculated using the estimated parameter mean value and standard deviation.

grid.size a vector of length(parlist) indicating the number of grid-points along each
parameter direction. This is only used if the parlist is empty.

grid.qnt a vector of length(parlist) determining the width of the grid points from the
mean value in multiples of the standard deviation.

hessian a boolean indicating whether to use the hessian or not during the profile opti-
mization.

silent boolean whether or not to mute current iteration number the control argument.

control a list of optimization output controls (see nlminb)

... various arguments (not in use)

Note

The implementation was modified from that of https://github.com/kaskr/adcomp/blob/master/TMB/R/tmbprofile.R

Examples

library(ctsmTMB)
model <- ctsmTMB$new()

# create model
model$addSystem(dx ~ theta * (mu+u-x) * dt + sigma_x*dw)
model$addObs(y ~ x)
model$setVariance(y ~ sigma_y^2)
model$addInput(u)
model$setParameter(

theta = c(initial = 1, lower=1e-5, upper=50),
mu = c(initial=1.5, lower=0, upper=5),
sigma_x = c(initial=1, lower=1e-10, upper=30),
sigma_y = 1e-2

)
model$setInitialState(list(1,1e-1))

# fit model to data
fit <- model$estimate(Ornstein)

# calculate profile likelihood
out <- profile(fit,parlist=list(theta=NULL))

summary.ctsmTMB.fit Basic summary of ctsmTMB fit object

Description

Basic summary of ctsmTMB fit object



26 summary.ctsmTMB.fit

Usage

## S3 method for class 'ctsmTMB.fit'
summary(object, correlation = FALSE, ...)

Arguments

object a ctsmTMB fit object

correlation boolean indicating whether or not to display the parameter correlation structure

... additional arguments

Value

a summary of the estimated ctsmTMB model fit

Examples

library(ctsmTMB)
model <- ctsmTMB$new()

# create model
model$addSystem(dx ~ theta * (mu+u-x) * dt + sigma_x*dw)
model$addObs(y ~ x)
model$setVariance(y ~ sigma_y^2)
model$addInput(u)
model$setParameter(

theta = c(initial = 1, lower=1e-5, upper=50),
mu = c(initial=1.5, lower=0, upper=5),
sigma_x = c(initial=1, lower=1e-10, upper=30),
sigma_y = 1e-2

)
model$setInitialState(list(1,1e-1))

# fit model to data
fit <- model$estimate(Ornstein)

# print model summary
summary(fit, correlation=TRUE)



Index

∗ data
Ornstein, 18

ctsmTMB, 2

nlminb, 25

oneStepPredict, 9, 10, 12
Ornstein, 18

plot.ctsmTMB.fit, 18
plot.ctsmTMB.pred, 20
plot.ctsmTMB.profile, 21
print.ctsmTMB, 22
print.ctsmTMB.fit, 23
profile.ctsmTMB.fit, 24

summary.ctsmTMB.fit, 25

27


	ctsmTMB
	Ornstein
	plot.ctsmTMB.fit
	plot.ctsmTMB.pred
	plot.ctsmTMB.profile
	print.ctsmTMB
	print.ctsmTMB.fit
	profile.ctsmTMB.fit
	summary.ctsmTMB.fit
	Index

