## ----fig.show='hold'---------------------------------------------------------- library(ctmm) data("buffalo") Cilla <- buffalo$Cilla plot(Cilla) title("1 Buffalo") plot(buffalo,col=rainbow(length(buffalo))) title("5 Buffalo") ## ----fig.show='hold'---------------------------------------------------------- SVF <- variogram(Cilla) level <- c(0.5,0.95) # 50% and 95% CIs xlim <- c(0,12 %#% "hour") # 0-12 hour window plot(SVF,xlim=xlim,level=level) title("zoomed in") plot(SVF,fraction=0.65,level=level) title("zoomed out") ## ----fig.show='hold'---------------------------------------------------------- m.iid <- ctmm(sigma=23 %#% "km^2") m.ou <- ctmm(sigma=23 %#% "km^2",tau=6 %#% "day") plot(SVF,CTMM=m.iid,fraction=0.65,level=level,col.CTMM="red") title("Independent and identically distributed data") plot(SVF,CTMM=m.ou,fraction=0.65,level=level,col.CTMM="purple") title("Ornstein-Uhlenbeck movement") ## ----fig.show='hold'---------------------------------------------------------- m.ouf <- ctmm(sigma=23 %#% "km^2",tau=c(6 %#% "day",1 %#% "hour")) plot(SVF,CTMM=m.ou,level=level,col.CTMM="purple",xlim=xlim) title("Ornstein-Uhlenbeck movement") plot(SVF,CTMM=m.ouf,level=level,col.CTMM="blue",xlim=xlim) title("Ornstein-Uhlenbeck-F movement") ## ----fig.show='hold'---------------------------------------------------------- plot(SVF,CTMM=m.ou,fraction=0.65,level=level,col.CTMM="purple") title("Ornstein-Uhlenbeck movement") plot(SVF,CTMM=m.ouf,fraction=0.65,level=level,col.CTMM="blue") title("Ornstein-Uhlenbeck-F movement") ## ----fig.show='hold'---------------------------------------------------------- # simulate fake buffalo with the same sampling schedule willa <- simulate(m.ouf,t=Cilla$t) plot(willa) title("simulation") # now calculate and plot its variogram SVF2 <- variogram(willa) plot(SVF2,CTMM=m.ouf,fraction=0.65,level=level,col.CTMM="blue") title("simulation") ## ----fig.show='hold'---------------------------------------------------------- data("gazelle") dt.plot(gazelle) title("Sampling Intervals") SVF3 <- variogram(gazelle[[18]]) plot(SVF3,fraction=0.85,level=level) title("Default method") # 1, 5, 25 hour sampling intervals dt <- c(1,5,25) %#% "hour" SVF3 <- variogram(gazelle[[18]],dt=dt) plot(SVF3,fraction=0.85,level=level) title("Multi method") ## ----fig.show='hold'---------------------------------------------------------- # buffalo 4 is bad SVF4 <- lapply(buffalo[-4],variogram) SVF4 <- mean(SVF4) plot(SVF4,fraction=0.35,level=level) title("Population variogram") ## ----fig.show='hold'---------------------------------------------------------- M.IID <- ctmm.fit(Cilla,m.iid) summary(M.IID) ## ----fig.show='hold'---------------------------------------------------------- M.OU <- ctmm.fit(Cilla,m.ou) summary(M.OU) ## ----fig.show='hold'---------------------------------------------------------- M.OUF <- ctmm.fit(Cilla,m.ouf) summary(M.OUF) ## ----fig.show='hold'---------------------------------------------------------- FITS <- list(IID=M.IID,OU=M.OU,OUF=M.OUF) summary(FITS) ## ----------------------------------------------------------------------------- # CRAN policy limits us to 2 cores FITZ <- ctmm.select(Cilla,m.ouf,verbose=TRUE,cores=2) summary(FITZ) ## ----fig.show='hold'---------------------------------------------------------- plot(SVF,CTMM=FITS,col.CTMM=c("red","purple","blue"),fraction=0.65,level=0.5) title("zoomed out") plot(SVF,CTMM=FITS,col.CTMM=c("red","purple","blue"),xlim=xlim,level=0.5) title("zoomed in")