## ----fig.show='hold'---------------------------------------------------------- library(ctmm) data(buffalo) Pepper <- buffalo$Pepper M.IID <- ctmm.fit(Pepper) # no autocorrelation timescales GUESS <- ctmm.guess(Pepper,interactive=FALSE) # automated model guess M.OUF <- ctmm.fit(Pepper,GUESS) # in general, use ctmm.select instead ## ----fig.show='hold', results = "hide"---------------------------------------- KDE <- akde(Pepper,M.IID) # KDE AKDE <- akde(Pepper,M.OUF) # AKDE wAKDE <- akde(Pepper,M.OUF,weights=TRUE) # weighted AKDE ## ----fig.show='hold', results = "hide", eval=FALSE---------------------------- # # calculate one extent for all UDs # EXT <- extent(list(KDE,AKDE,wAKDE),level=0.95) # # plot(Pepper,UD=KDE,xlim=EXT$x,ylim=EXT$y) # title(expression("IID KDE"["C"])) # plot(Pepper,UD=AKDE,xlim=EXT$x,ylim=EXT$y) # title(expression("OUF AKDE"["C"])) # plot(Pepper,UD=wAKDE,xlim=EXT$x,ylim=EXT$y) # title(expression("weighted OUF AKDE"["C"])) ## ----fig.show='hold', results = "hide", echo=FALSE---------------------------- # calculate one extent for all UDs EXT <- extent(list(KDE,AKDE,wAKDE),level=0.95) # sampling intervals in hours col <- "hr" %#% diff(Pepper$t) # minimum adjacent sampling interval col <- pmin(c(Inf,col),c(col,Inf)) # sampling intervals under 1.5 hours col <- (col < 1.5) # red (low-frequency) or yellow (high-frequency) col <- grDevices::rgb(1,col,0) plot(Pepper,UD=KDE,xlim=EXT$x,ylim=EXT$y,col=col) title(expression("IID KDE"["C"])) plot(Pepper,UD=AKDE,xlim=EXT$x,ylim=EXT$y,col=col) title(expression("OUF AKDE"["C"])) plot(Pepper,UD=wAKDE,xlim=EXT$x,ylim=EXT$y,col=col) title(expression("weighted OUF AKDE"["C"])) ## ----fig.show='hold'---------------------------------------------------------- summary(KDE) summary(wAKDE)