## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup, echo = FALSE------------------------------------------------------ library(comsimitv) ## ----gauss, fig.cap="Shape of Gaussian competirion kernel with different $\\sigma_b$ values", echo =FALSE, fig.height=3.5---- oldpar <- par(no.readonly = TRUE) d<-seq(-1,1,0.01) sigma.b=0.01 alpha<-exp(-d^2/sigma.b) par(mai=c(0.82, 0.82, 0.2, 0.42),cex.lab=1.2) plot(d,alpha, type="l",col="red", ylab=expression(alpha["ij"]), xlab=expression("B"["i"]-"B"["j"]), ylim=c(0,1.2)) sigma.b=0.1 alpha<-exp(-d^2/sigma.b) lines(d,alpha, type="l",col="blue") sigma.b=1 alpha<-exp(-d^2/sigma.b) lines(d,alpha, type="l",col="green") legend("topright", c(expression(paste(sigma["b"]," = 0.01")), expression(paste(sigma["b"]," = 0.1")),expression(paste(sigma["b"]," = 1"))), col = c("red", "blue","green"),lty=1,bty="n") par(oldpar) ## ----kisdi1, echo =FALSE, fig.cap="Shape of Kisdi's convex-convave function with different values of v (C=1,$\\sigma_b$=0.1)", fig.height=3.5---- oldpar <- par(no.readonly = TRUE) d<-seq(-1,1,0.01) sigma.b=0.1 C=1 v=0.1 alpha<-C*(1-1/(1+v*exp(-(d)/sigma.b))) par(mai=c(0.82, 0.82, 0.2, 0.42),cex.lab=1.2) plot(d,alpha, type="l",col="red", ylab=expression(alpha["ij"]), xlab=expression("B"["i"]-"B"["j"])) v=1 alpha<-C*(1-1/(1+v*exp(-(d)/sigma.b))) lines(d,alpha, type="l",col="blue") v=10 alpha<-C*(1-1/(1+v*exp(-(d)/sigma.b))) lines(d,alpha, type="l",col="green") legend("right", c("v=0.1","v=1","v=10"), col = c("red", "blue","green"),lty=1,bty="n") par(oldpar) ## ----fig3, echo =FALSE, fig.cap="Shape of Kisdi's convex-convave function with different values of $\\sigma_b$ (C=1,v=1)", fig.height=3.5---- oldpar <- par(no.readonly = TRUE) d<-seq(-1,1,0.01) sigma.b=0.01 C=1 v=1 alpha<-C*(1-1/(1+v*exp(-(d)/sigma.b))) par(mai=c(0.82, 0.82, 0.2, 0.42),cex.lab=1.2) plot(d,alpha, type="l",col="red", ylab=expression(alpha["ij"]), xlab=expression("B"["i"]-"B"["j"])) sigma.b=0.1 alpha<-C*(1-1/(1+v*exp(-(d)/sigma.b))) lines(d,alpha, type="l",col="blue") sigma.b=-0.1 alpha<-C*(1-1/(1+v*exp(-(d)/sigma.b))) lines(d,alpha, type="l",col="green") legend("right", c(expression(paste(sigma["b"]," = 0.01")), expression(paste(sigma["b"]," = 0.1")),expression(paste(sigma["b"]," = -0.1"))), col = c("red", "blue","green"),lty=1,bty="n") par(oldpar) ## ----fig4, echo =FALSE, fig.cap="Shape of smooth function by Nattrass et al. with different values of $\\sigma_b$ (C=1)", fig.height=4---- oldpar <- par(no.readonly = TRUE) d<-seq(-1,1,0.01) sigma.b=0.01 C=1 v=1 alpha<-1+C-2*C/(1+exp(-(2*d)/sigma.b)) par(mai=c(0.82, 0.82, 0.2, 0.42),cex.lab=1.2) plot(d,alpha, type="l",col="red", ylab=expression(alpha["ij"]), xlab=expression("B"["i"]-"B"["j"])) sigma.b=0.5 alpha<-1+C-2*C/(1+exp(-(2*d)/sigma.b)) lines(d,alpha, type="l",col="blue") sigma.b=-0.5 alpha<-1+C-2*C/(1+exp(-(2*d)/sigma.b)) lines(d,alpha, type="l",col="green") legend("right", c(expression(paste(sigma["b"]," = 0.01")), expression(paste(sigma["b"]," = 0.5")),expression(paste(sigma["b"]," = -0.5"))), col = c("red", "blue","green"),lty=1,bty="n") par(oldpar)