## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(commecometrics) library(ggplot2) library(sf) ## ----set-working-directory, eval = FALSE-------------------------------------- # options(timeout = 600) # download.file("https://ndownloader.figshare.com/files/56228033", destfile = "data.zip", mode = "wb") # unzip("data.zip") ## ----eval = FALSE------------------------------------------------------------- # samplingPoints <- read.csv("data/sampling_points.csv") # head(samplingPoints) # traits <- read.csv("Data/traits.csv") # head(traits) ## ----load-shapefile, message = FALSE, eval = FALSE---------------------------- # geography <- sf::st_read("data/data_0.shp", quiet = TRUE) # geography$SCI_NAME <- gsub(" ", "_", geography$SCI_NAME) ## ----eval = FALSE------------------------------------------------------------- # traitsByPoint <- summarize_traits_by_point( # points_df = samplingPoints, # trait_df = traits, # species_polygons = geography, # trait_column = "RBL", # species_name_col = "SCI_NAME", # continent = FALSE, # parallel = FALSE # ) # # head(traitsByPoint[[1]]) ## ----eval = FALSE------------------------------------------------------------- # ecoModel <- ecometric_model( # points_df = traitsByPoint$points, # env_var = "precip", # transform_fun = function(x) log(x + 1), # inv_transform_fun = function(x) exp(x) - 1, # min_species = 3 # ) ## ----eval = FALSE------------------------------------------------------------- # summary(ecoModel$model) # # print(ecoModel$correlation) ## ----fig.width=5, fig.height=4, eval = FALSE---------------------------------- # ecoPlot <- ecometric_space( # model_out = ecoModel, # env_name = "Precipitation (log)", # x_label = "Community mean", # y_label = "Community standard deviation" # ) # # print(ecoPlot) ## ----bin-count-subset, eval = FALSE------------------------------------------- # ecoModel$diagnostics$bin_counts[35:45, 26:37] # # head(ecoModel$eco_space) ## ----sensitivity-plot, fig.width=7.2, fig.height=6, warning=FALSE, message=FALSE, eval = FALSE---- # sensitivityResults <- sensitivity_analysis( # points_df = traitsByPoint$points, # env_var = "precip", # sample_sizes = seq(100, 1000, 100), # iterations = 5, # transform_fun = function(x) log(x + 1), # parallel = FALSE # ) # # head(sensitivityResults$combined_results) # # print(sensitivityResults$summary_results) ## ----eval = FALSE------------------------------------------------------------- # table(samplingPoints$VegSimple) # # samplingPoints$VegSimple <- factor(samplingPoints$VegSimple, # levels = 1:5, # labels = c("Arctic", "Deciduous", "Desert", "Evergreen", "Grassland")) # # # ecoModelQual <- ecometric_model_qual( # points_df = traitsByPoint$points, # category_col = "VegSimple", # min_species = 3 # ) ## ----message=FALSE, warning=FALSE, fig.width=5, fig.height=4, eval = FALSE---- # ecoPlotQual <- ecometric_space_qual( # model_out = ecoModelQual, # x_label = "Community mean", # y_label = "Community standard deviation" # ) # # print(ecoPlotQual$ecometric_space_plot) # Qualitative model # print(ecoPlotQual$probability_maps$Grassland) # One of the category-specific maps ## ----fig.width=7.2, fig.height=6, warning=FALSE, message=FALSE, eval = FALSE---- # sensitivityQual <- sensitivity_analysis_qual( # points_df = traitsByPoint$points, # category_col = "VegSimple", # sample_sizes = seq(100, 1000, 100), # iterations = 10, # parallel = FALSE # ) # # print(sensitivityQual$summary_results)