## ----echo=FALSE--------------------------------------------------------------- library(knitr) opts_chunk$set(comment = NA, fig.width = 7, fig.height = 5, fig.align = "center") ## ----------------------------------------------------------------------------- library(coala) model <- coal_model(20, 2000) + feat_mutation(2) + feat_recombination(1) + sumstat_tajimas_d() stats <- simulate(model, seed = 15) plot(density(stats$tajimas_d, na.rm = TRUE), main = "Neutral Distribution of Tajiam's D") ## ----------------------------------------------------------------------------- model2a <- coal_model(c(10, 10), 100) + feat_mutation(10) + feat_recombination(5) + feat_migration(0.5, symmetric = TRUE) + sumstat_sfs(population = "all") stats <- simulate(model2a, seed = 20) barplot(stats$sfs / sum(stats$sfs), names.arg = seq_along(stats$sfs), col = 3) ## ----------------------------------------------------------------------------- model2b <- model2a + feat_size_change(0.1, population = 2, time = 0.25) + feat_size_change(1, population = 2, time = 0.5) stats <- simulate(model2b, seed = 25) barplot(stats$sfs / sum(stats$sfs), names.arg = seq_along(stats$sfs), col = 4) ## ----------------------------------------------------------------------------- model3 <- coal_model(10, 50) + feat_mutation(par_prior("theta", sample.int(100, 1))) + sumstat_nucleotide_div() stats <- simulate(model3, nsim = 40) mean_pi <- sapply(stats, function(x) mean(x$pi)) theta <- sapply(stats, function(x) x$pars[["theta"]]) plot(theta, mean_pi, pch = 19, col = "orange") abline(lm(mean_pi ~ theta), col = "red2", lty = 3)