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1 Introduction

Estimating the causal effect of a treatment or exposure is not straightforward for an observational study.
In the observational study, the assumption of no confounders for the exposure or treatment of interest is
violated. We consider the marginal structural model with inverse probability weighting (IPW) ([2]). For
survival outcomes, [I] proposed the marginal structural Cox proportional hazards model to estimate the
treatment effect.

In failure-time settings, a competing event is any event that makes it impossible for the event of interest to
occur. The main contribution of this package is, after fitting the cause-specific hazards models and estimating
the cumulative incidence functions (i.e. risks), we provide inference on the risk difference or risk ratio at any
given time.

2 Example: Follicular cell lymphoma study

We consider the follicular cell lymphoma data from Pintilie (2007) where additional details also can be found.
The study consists of 541 patients with early disease stage follicular cell lymphoma (I or IT) and treated with
radiation alone or a combination treatment of radiation and chemotherapy. We are interested in: compared
to radiation only treatment, whether combination treatment has a causal effect on disease relapse. Death
is then the competing event for disease relapse, and people who have no relapse or death are censored. We
have the baseline covariates of interest: patient’s age, haemoglobin levels, and the clinical stage.

2.1 Notation

We define A = 1 if the patient receives the combination treatment, we also define T as the time to disease
relapse, and J as the event type indicator (J = 1 is the disease relapse, J = 2 is death). Let T° be the
potential time to disease relapse, and J* be the analogous potential event-type indicator, under exposure
a =0,1. Let Ly be the baseline confounders: patients age, haemoglobin levels, and the clinical stage.



2.2 Statistical Methods

The causal relationship can be shown from the below DAG:

Figure 1: The causal directed acyclic graph
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We make the following assumptions:

(i) Exchangeability: (7%, J%) L A|Lg

(ii) Positivity: P(A = a|Lg) >0

(iii) Consistency: If A=a, then T* =T, J* = J.

We specify the marginal structural cause-specific cox proportional hazards model for event j = 1,2:
Ara gazj(t) = Aoj(t)e’ 2,

which is the cause-specific hazard of T at t under treatment a, Ao;(t) is the unspecified baseline cause-specific
hazards for event j, e’ is the causal cause-specific hazard ratio for the effects of combination treatment.

Since we do not always observe the counterfactual outcome, in order to estimate the parameter 3;, we use
the IPW to create a pseudo population. The inverse probability weights for treatment A=a can be defined
as:

1
W) = P =alLo)
and the stabilized inverse probability weights for treatment A=a will be:
P(A=a)
SW(a) = =————
( ) P(A = a|L0)

Estimating the cumulative incidence function (CIF)
After we estimating the cause specific hazard: A} using IPW, we could estimate the corresponding CIF.
We could use:

P(T" < t,J° = j) :/O 5% (u)dA% (u),

where S (u) is the estimated over all survival function for 7, §%(u) = e~ M @-As (), Af(u) = Ao; (u)eBJ'*“,

and Ag;(u) is a Breslow-type estimator of the baseline cumulative hazard (for j=1,2).

2.3 Data Analysis
2.3.1 Generate the weights

We first need to generate the IPW weights for the data, the function doPS will help us to do that: after
having fit the doPS object, we will have a new dataset containing 2 types of the weights and the propensity
score.



> ## Change the treatment name

> follic$treatment <- ifelse(follic$ch=="Y","Combination treatment","Radiation alone")
> ## Distribution of the treatment

> table(follic$treatment)

Combination treatment Radiation alone
118 423
> ## make the stage as the character variable:
> follic$clinstg <- ifelse(follic$clinstg==1,"Stage I","Stage II")
> ## Generate the weight:
> OQUT1 <- doPS(dat = follic,
+ Trt = "treatment",
+ Trt.name = "Combination treatment',
+ VARS. = c("age", "hgb","clinstg"))
> follicl <- OUT1[["Data"]l]

After having fit the doPS object, we then can check the distribution of the propensity score:
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We can also check the balance as measured by standardized mean differences between the treated and
control samples:
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We can tell from the second plot that all the baseline covariates are balanced well: SMD between -0.1
and 0.1.

2.3.2 Estimating the parameters

After having the estimated propensity scores and IPW, the next step is to fit the marginal structural Cox
proportional hazard model for estimating treatment effects: we fit the model using the stabilized weight as
the example:

> tabl <- weight_cause_cox(follicl,

+ time = "time",

+ time2 = NULL,

+ Event.var = "status.1",

+ Event = "Disease relapse",
+ weight.type = "Stabilized",
+ ties = NULL)

> tabl

Estimate Robust SE z-value p-value Hazard Ratio
Combination treatment "$-0.258%" "$0.186$" "$-1.39%" "$0.165%" "$0.773$"
95\\% CI
Combination treatment "($0.537$, $1.112%)"

From the results, we can see that the estimated hazard ratio is 0.773 with 95% CI (0.537, 1.112), so there
is no significant treatment causal effect.

2.3.3 Estimating the CIF:

We can also estimate the CIF from the data for the different event types, the 95% confidence interval of the
CIF is calculated by bootstrap. We estimate the CIF for the disease relapse first:

> cif.dr <- cif_est(follicl,

+ time = "time",
+ time2 = NULL,
+ Event.var = "status.1",



Events = c("Disease relapse","Death"),
cif.event = "Disease relapse”,
weight.type = "Stabilized",
ties = NULL,
risktab = TRUE,
risk.time = 10)

cif_dr <- cif.dr$cif_data

risk_dr10 <- cif.dr$risk_tab
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We can plot the CIF function with 95% confidence interval:

> plot_est_cif(cif.dat = cif_dr,

+ color = c("#1c9099", "#756bb1"),

+ ci.cif = TRUE)
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We can also show the risk difference and risk ratio (with 95% CI) at time = 10:

> risk_dri0

Risk Difference (95\\% CI) Risk Ratio (95\\% CI)
time: 10 $-0.082$% ($-0.109,0.104$) $0.838$% ($0.793,1.214%)

We can then estimate the CIF for death:

> cif.death <- cif_est(follicl,

+ time = "time",

+ time2 = NULL,

+ Event.var = "status.1",

+ Events = c("Disease relapse", "Death"),
+ cif.event = "Death",

+ weight.type = "Stabilized",

+ ties = NULL,

+ risktab = TRUE,

+ risk.time = 10)

> cif_death <- cif.death$cif_data
> risk_deathl0 <- cif.death$risk_tab



The CIF plot:

> plot_est_cif(cif.dat = cif_death,

+ color = c("#2c7fb8", "#£03b20"),
+ ci.cif = TRUE)
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We can also show the risk difference and risk ratio (with 95% CI) at time = 10:

> risk_death10

Risk Difference (95\\% CI) Risk Ratio (95\\Y% CI)
Time: 10 $-0.001$ ($-0.053,0.053$) $0.988% ($0.504,1.623%)
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