## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(ciccr) library(MASS) ## ----------------------------------------------------------------------------- y = ACS_CC$topincome t = ACS_CC$baplus x = ACS_CC$age ## ----------------------------------------------------------------------------- x = splines::bs(x, df = 6) ## ----------------------------------------------------------------------------- results_case = avg_RR_logit(y, t, x, 'case') results_case$est results_case$se ## ----------------------------------------------------------------------------- results_control = avg_RR_logit(y, t, x, 'control') results_control$est results_control$se ## ----------------------------------------------------------------------------- results = cicc_RR(y, t, x, 'cc', 0.95) ## ----------------------------------------------------------------------------- # point estimates results$est # standard errors results$se # confidence intervals results$ci ## ----------------------------------------------------------------------------- cicc_plot(results) ## ----------------------------------------------------------------------------- logit = stats::glm(y~t+x, family=stats::binomial("logit")) est_logit = stats::coef(logit) ci_logit = stats::confint(logit, level = 0.9) # point estimate exp(est_logit) # confidence interval exp(ci_logit) ## ----------------------------------------------------------------------------- results_AR = cicc_AR(y, t, x, sampling = 'cc', no_boot = 100) ## ----------------------------------------------------------------------------- cicc_plot(results_AR, parameter = 'AR') ## ----------------------------------------------------------------------------- y = ACS_CP$topincome t = ACS_CP$baplus x = ACS_CP$age ## ----------------------------------------------------------------------------- print(head(y)) ## ----------------------------------------------------------------------------- y = as.integer(is.na(y)==FALSE) ## ----------------------------------------------------------------------------- results_control = avg_RR_logit(y, t, x, 'control') results_control$est results_control$se ## ----------------------------------------------------------------------------- results = cicc_RR(y, t, x, 'cp', 0.95) cicc_plot(results) ## ----------------------------------------------------------------------------- results_AR = cicc_AR(y, t, x, sampling = 'cp', no_boot = 100) ## ----------------------------------------------------------------------------- cicc_plot(results_AR, parameter = 'AR')