
Package ‘bestNormalize’
August 18, 2023

Type Package

Title Normalizing Transformation Functions

Version 1.9.1

Date 2023-08-17

Description Estimate a suite of normalizing transformations, including
a new adaptation of a technique based on ranks which can guarantee
normally distributed transformed data if there are no ties: ordered
quantile normalization (ORQ). ORQ normalization combines a rank-mapping
approach with a shifted logit approximation that allows
the transformation to work on data outside the original domain. It is
also able to handle new data within the original domain via linear
interpolation. The package is built to estimate the best normalizing
transformation for a vector consistently and accurately. It implements
the Box-Cox transformation, the Yeo-Johnson transformation, three types
of Lambert WxF transformations, and the ordered quantile normalization
transformation. It estimates the normalization efficacy of other
commonly used transformations, and it allows users to specify
custom transformations or normalization statistics. Finally, functionality
can be integrated into a machine learning workflow via recipes.

URL https://petersonr.github.io/bestNormalize/,

https://github.com/petersonR/bestNormalize

License GPL-3

Depends R (>= 3.1.0)

Imports LambertW (>= 0.6.5), nortest, dplyr, doParallel, foreach,
doRNG, recipes, tibble, methods, butcher, purrr, generics

Suggests knitr, rmarkdown, MASS, testthat, mgcv, parallel, ggplot2,
scales, rlang, covr

VignetteBuilder knitr

LazyData true

RoxygenNote 7.2.3

Encoding UTF-8

1

https://petersonr.github.io/bestNormalize/
https://github.com/petersonR/bestNormalize

2 bestNormalize-package

NeedsCompilation no

Author Ryan Andrew Peterson [aut, cre]
(<https://orcid.org/0000-0002-4650-5798>)

Maintainer Ryan Andrew Peterson <ryan.a.peterson@cuanschutz.edu>

Repository CRAN

Date/Publication 2023-08-18 08:42:33 UTC

R topics documented:
bestNormalize-package . 2
arcsinh_x . 3
autotrader . 4
bestLogConstant . 5
bestNormalize . 6
binarize . 10
boxcox . 11
double_reverse_log . 12
exp_x . 14
lambert . 15
log_x . 17
no_transform . 19
orderNorm . 20
plot.bestNormalize . 22
sqrt_x . 23
step_best_normalize . 25
step_orderNorm . 27
yeojohnson . 28

Index 31

bestNormalize-package bestNormalize: Flexibly calculate the best normalizing transformation
for a vector

Description

The bestNormalize package provides several normalizing transformations, and introduces a new
transformation based off of the order statistics, orderNorm. Perhaps the most useful function is
bestNormalize, which attempts all of these transformations and picks the best one based off of a
goodness of fit statistic.

Author(s)

Maintainer: Ryan Andrew Peterson <ryan.a.peterson@cuanschutz.edu> (ORCID)

https://orcid.org/0000-0002-4650-5798
https://orcid.org/0000-0002-4650-5798

arcsinh_x 3

See Also

Useful links:

• https://petersonr.github.io/bestNormalize/

• https://github.com/petersonR/bestNormalize

arcsinh_x arcsinh(x) Transformation

Description

Perform a arcsinh(x) transformation

Usage

arcsinh_x(x, standardize = TRUE, ...)

S3 method for class 'arcsinh_x'
predict(object, newdata = NULL, inverse = FALSE, ...)

S3 method for class 'arcsinh_x'
print(x, ...)

Arguments

x A vector to normalize with with x

standardize If TRUE, the transformed values are also centered and scaled, such that the
transformation attempts a standard normal

... additional arguments

object an object of class ’arcsinh_x’

newdata a vector of data to be (potentially reverse) transformed

inverse if TRUE, performs reverse transformation

Details

arcsinh_x performs an arcsinh transformation in the context of bestNormalize, such that it creates
a transformation that can be estimated and applied to new data via the predict function.

The function is explicitly: log(x + sqrt(x^2 + 1))

https://petersonr.github.io/bestNormalize/
https://github.com/petersonR/bestNormalize

4 autotrader

Value

A list of class arcsinh_x with elements

x.t transformed original data

x original data

mean mean after transformation but prior to standardization

sd sd after transformation but prior to standardization

n number of nonmissing observations

norm_stat Pearson’s P / degrees of freedom

standardize was the transformation standardized

The predict function returns the numeric value of the transformation performed on new data, and
allows for the inverse transformation as well.

Examples

x <- rgamma(100, 1, 1)

arcsinh_x_obj <- arcsinh_x(x)
arcsinh_x_obj
p <- predict(arcsinh_x_obj)
x2 <- predict(arcsinh_x_obj, newdata = p, inverse = TRUE)

all.equal(x2, x)

autotrader Prices of 6,283 cars listed on Autotrader

Description

A dataset containing the prices and other attributes of over 6000 cars in the Minneapolis area.

Usage

autotrader

Format

A data frame with 6283 rows and 10 variables:

price price, in US dollars

Car_Info Raw description from website

Link hyperlink to listing (must be appended to https://www.autotrader.com/)

Make Car manufacturer

Year Year car manufactured

bestLogConstant 5

Location Location of listing

Radius Radius chosen for search

mileage mileage on vehicle

status used/new/certified

model make and model, separated by space

Source

https://www.autotrader.com/

bestLogConstant Calculate and perform best normalizing log transformation (experi-
mental)

Description

Similar to bestNormalize, this selects the best candidate constant for a log transformation on the ba-
sis of the Pearson P test statistic for normality. The transformation that has the lowest P (calculated
on the transformed data) is selected. This function is currently in development and may not behave
as expected.

See details for more information.

Usage

bestLogConstant(x, a, standardize = TRUE, ...)

S3 method for class 'bestLogConstant'
predict(object, newdata = NULL, inverse = FALSE, ...)

S3 method for class 'bestLogConstant'
print(x, ...)

Arguments

x A vector to normalize

a (optional) a list of candidate constants to choose from

standardize If TRUE, the transformed values are also centered and scaled, such that the
transformation attempts a standard normal. This will not change the normality
statistic.

... additional arguments.

object an object of class ’bestLogConstant’

newdata a vector of data to be (reverse) transformed

inverse if TRUE, performs reverse transformation

https://www.autotrader.com/

6 bestNormalize

Details

bestLogConstant estimates the optimal normalizing constant for a log transformation. This trans-
formation can be performed on new data, and inverted, via the predict function.

Value

A list of class bestLogConstant with elements

x.t transformed original data

x original data

norm_stats Pearson’s Pearson’s P / degrees of freedom

method out-of-sample or in-sample, number of folds + repeats
chosen_constant

the chosen constant transformation (of class ‘log_x‘)
other_transforms

the other transformations (of class ‘log_x‘)

The predict function returns the numeric value of the transformation performed on new data, and
allows for the inverse transformation as well.

See Also

bestNormalize, log_x,

bestNormalize Calculate and perform best normalizing transformation

Description

Performs a suite of normalizing transformations, and selects the best one on the basis of the Pearson
P test statistic for normality. The transformation that has the lowest P (calculated on the transformed
data) is selected. See details for more information.

Usage

bestNormalize(
x,
standardize = TRUE,
allow_orderNorm = TRUE,
allow_lambert_s = FALSE,
allow_lambert_h = FALSE,
allow_exp = TRUE,
out_of_sample = TRUE,
cluster = NULL,
k = 10,
r = 5,

bestNormalize 7

loo = FALSE,
warn = FALSE,
quiet = FALSE,
tr_opts = list(),
new_transforms = list(),
norm_stat_fn = NULL,
...

)

S3 method for class 'bestNormalize'
predict(object, newdata = NULL, inverse = FALSE, ...)

S3 method for class 'bestNormalize'
print(x, ...)

S3 method for class 'bestNormalize'
tidy(x, ...)

Arguments

x A ‘bestNormalize‘ object.

standardize If TRUE, the transformed values are also centered and scaled, such that the
transformation attempts a standard normal. This will not change the normality
statistic.

allow_orderNorm

set to FALSE if orderNorm should not be applied
allow_lambert_s

Set to FALSE if the lambertW of type "s" should not be applied (see details).
Expect about 2-3x elapsed computing time if TRUE.

allow_lambert_h

Set to TRUE if the lambertW of type "h" should be applied (see details). Expect
about 2-3x elapsed computing time.

allow_exp Set to TRUE if the exponential transformation should be applied (sometimes
this will cause errors with heavy right skew)

out_of_sample if FALSE, estimates quickly in-sample performance

cluster name of cluster set using makeCluster

k number of folds

r number of repeats

loo should leave-one-out CV be used instead of repeated CV? (see details)

warn Should bestNormalize warn when a method doesn’t work?

quiet Should a progress-bar not be displayed for cross-validation progress?

tr_opts a list (of lists), specifying options to be passed to each transformation (see de-
tails)

new_transforms a named list of new transformation functions and their predict methods (see
details)

8 bestNormalize

norm_stat_fn if specified, a function to calculate to assess normality (default is the Pearson
chi-squared statistic divided by its d.f.)

... not used

object an object of class ’bestNormalize’

newdata a vector of data to be (reverse) transformed

inverse if TRUE, performs reverse transformation

Details

bestNormalize estimates the optimal normalizing transformation. This transformation can be per-
formed on new data, and inverted, via the predict function.

This function currently estimates the Yeo-Johnson transformation, the Box Cox transformation (if
the data is positive), the log_10(x+a) transformation, the square-root (x+a) transformation, and the
arcsinh transformation. a is set to max(0, -min(x) + eps) by default. If allow_orderNorm == TRUE
and if out_of_sample == FALSE then the ordered quantile normalization technique will likely be
chosen since it essentially forces the data to follow a normal distribution. More information on the
orderNorm technique can be found in the package vignette, or using ?orderNorm.

Repeated cross-validation is used by default to estimate the out-of-sample performance of each
transformation if out_of_sample = TRUE. While this can take some time, users can speed it up by
creating a cluster via the parallel package’s makeCluster function, and passing the name of this
cluster to bestNormalize via the cl argument. For best performance, we recommend the number
of clusters to be set to the number of repeats r. Care should be taken to account for the number of
observations per fold; too small a number and the estimated normality statistic could be inaccurate,
or at least suffer from high variability.

As of version 1.3, users can use leave-one-out cross-validation as well for each method by setting
loo to TRUE. This will take a lot of time for bigger vectors, but it will have the most accurate estimate
of normalization efficacy. Note that if this method is selected, arguments k, r are ignored. This
method will still work in parallel with the cl argument.

Note that the Lambert transformation of type "h" can be done by setting allow_lambert_h = TRUE,
however this can take significantly longer to run.

Use tr_opts in order to set options for each transformation. For instance, if you want to overide
the default a selection for log_x, set tr_opts$log_x = list(a = 1).

See the package’s vignette on how to use custom functions with bestNormalize. All it takes is
to create an S3 class and predict method for the new transformation and load it into the environ-
ment, then the new custom function (and its predict method) can be passed to bestNormalize with
new_transform.

Value

A list of class bestNormalize with elements

x.t transformed original data

x original data

norm_stats Pearson’s Pearson’s P / degrees of freedom

method out-of-sample or in-sample, number of folds + repeats

bestNormalize 9

chosen_transform

the chosen transformation (of appropriate class)

other_transforms

the other transformations (of appropriate class)

oos_preds Out-of-sample predictions (if loo == TRUE) or normalization stats

The predict function returns the numeric value of the transformation performed on new data, and
allows for the inverse transformation as well.

See Also

boxcox, orderNorm, yeojohnson

Examples

x <- rgamma(100, 1, 1)

Not run:
With Repeated CV
BN_obj <- bestNormalize(x)
BN_obj
p <- predict(BN_obj)
x2 <- predict(BN_obj, newdata = p, inverse = TRUE)

all.equal(x2, x)

End(Not run)

Not run:
With leave-one-out CV
BN_obj <- bestNormalize(x, loo = TRUE)
BN_obj
p <- predict(BN_obj)
x2 <- predict(BN_obj, newdata = p, inverse = TRUE)

all.equal(x2, x)

End(Not run)

Without CV
BN_obj <- bestNormalize(x, allow_orderNorm = FALSE, out_of_sample = FALSE)
BN_obj
p <- predict(BN_obj)
x2 <- predict(BN_obj, newdata = p, inverse = TRUE)

all.equal(x2, x)

10 binarize

binarize Binarize

Description

This function will perform a binarizing transformation, which could be used as a last resort if the
data cannot be adequately normalized. This may be useful when accidentally attempting normaliza-
tion of a binary vector (which could occur if implementing bestNormalize in an automated fashion).

Note that the transformation is not one-to-one, in contrast to the other functions in this package.

Usage

binarize(x, location_measure = "median")

S3 method for class 'binarize'
predict(object, newdata = NULL, inverse = FALSE, ...)

S3 method for class 'binarize'
print(x, ...)

Arguments

x A vector to binarize
location_measure

which location measure should be used? can either be "median", "mean", "mode",
a number, or a function.

object an object of class ’binarize’
newdata a vector of data to be (reverse) transformed
inverse if TRUE, performs reverse transformation
... additional arguments

Value

A list of class binarize with elements

x.t transformed original data
x original data
method location_measure used for original fitting
location estimated location_measure
n number of nonmissing observations
norm_stat Pearson’s P / degrees of freedom

The predict function with inverse = FALSE returns the numeric value (0 or 1) of the transforma-
tion on newdata (which defaults to the original data).

If inverse = TRUE, since the transform is not 1-1, it will create and return a factor that indicates
where the original data was cut.

boxcox 11

Examples

x <- rgamma(100, 1, 1)
binarize_obj <- binarize(x)
(p <- predict(binarize_obj))

predict(binarize_obj, newdata = p, inverse = TRUE)

boxcox Box-Cox Normalization

Description

Perform a Box-Cox transformation and center/scale a vector to attempt normalization

Usage

boxcox(x, standardize = TRUE, ...)

S3 method for class 'boxcox'
predict(object, newdata = NULL, inverse = FALSE, ...)

S3 method for class 'boxcox'
print(x, ...)

Arguments

x A vector to normalize with Box-Cox

standardize If TRUE, the transformed values are also centered and scaled, such that the
transformation attempts a standard normal

... Additional arguments that can be passed to the estimation of the lambda param-
eter (lower, upper, epsilon)

object an object of class ’boxcox’

newdata a vector of data to be (reverse) transformed

inverse if TRUE, performs reverse transformation

Details

boxcox estimates the optimal value of lambda for the Box-Cox transformation. This transformation
can be performed on new data, and inverted, via the predict function.

The function will return an error if a user attempt to transform nonpositive data.

12 double_reverse_log

Value

A list of class boxcox with elements

x.t transformed original data

x original data

mean mean after transformation but prior to standardization

sd sd after transformation but prior to standardization

lambda estimated lambda value for skew transformation

n number of nonmissing observations

norm_stat Pearson’s P / degrees of freedom

standardize was the transformation standardized

The predict function returns the numeric value of the transformation performed on new data, and
allows for the inverse transformation as well.

References

Box, G. E. P. and Cox, D. R. (1964) An analysis of transformations. Journal of the Royal Statistical
Society B, 26, 211-252.

See Also

boxcox

Examples

x <- rgamma(100, 1, 1)

bc_obj <- boxcox(x)
bc_obj
p <- predict(bc_obj)
x2 <- predict(bc_obj, newdata = p, inverse = TRUE)

all.equal(x2, x)

double_reverse_log Double Reverse Log(x + a) Transformation

Description

First reverses scores, then perform a log_b(x) normalization transformation, and then reverses
scores again.

double_reverse_log 13

Usage

double_reverse_log(
x,
b = 10,
standardize = TRUE,
eps = diff(range(x, na.rm = TRUE))/10,
warn = TRUE,
...

)

S3 method for class 'double_reverse_log'
predict(object, newdata = NULL, inverse = FALSE, ...)

S3 method for class 'double_reverse_log'
print(x, ...)

Arguments

x A vector to normalize with with x

b The base of the log (defaults to 10)

standardize If TRUE, the transformed values are also centered and scaled, such that the
transformation attempts a standard normal

eps The cushion for the transformation range (defaults to 10 percent)

warn Should a warning result from infinite values?

... additional arguments

object an object of class ’double_reverse_log’

newdata a vector of data to be (potentially reverse) transformed

inverse if TRUE, performs reverse transformation

Details

double_reverse_log performs a simple log transformation in the context of bestNormalize, such
that it creates a transformation that can be estimated and applied to new data via the predict
function. The parameter a is essentially estimated by the training set by default (estimated as the
minimum possible to some extent epsilon), while the base must be specified beforehand.

Value

A list of class double_reverse_log with elements

x.t transformed original data

x original data

mean mean after transformation but prior to standardization

sd sd after transformation but prior to standardization

b estimated base b value

14 exp_x

n number of nonmissing observations

norm_stat Pearson’s P / degrees of freedom

standardize was the transformation standardized

The predict function returns the numeric value of the transformation performed on new data, and
allows for the inverse transformation as well.

Examples

x <- rgamma(100, 1, 1)

double_reverse_log_obj <- double_reverse_log(x)
double_reverse_log_obj
p <- predict(double_reverse_log_obj)
x2 <- predict(double_reverse_log_obj, newdata = p, inverse = TRUE)

all.equal(x2, x)

exp_x exp(x) Transformation

Description

Perform a exp(x) transformation

Usage

exp_x(x, standardize = TRUE, warn = TRUE, ...)

S3 method for class 'exp_x'
predict(object, newdata = NULL, inverse = FALSE, ...)

S3 method for class 'exp_x'
print(x, ...)

Arguments

x A vector to normalize with with x

standardize If TRUE, the transformed values are also centered and scaled, such that the
transformation attempts a standard normal

warn Should a warning result from infinite values?

... additional arguments

object an object of class ’exp_x’

newdata a vector of data to be (potentially reverse) transformed

inverse if TRUE, performs reverse transformation

lambert 15

Details

exp_x performs a simple exponential transformation in the context of bestNormalize, such that it
creates a transformation that can be estimated and applied to new data via the predict function.

Value

A list of class exp_x with elements

x.t transformed original data
x original data
mean mean after transformation but prior to standardization
sd sd after transformation but prior to standardization
n number of nonmissing observations
norm_stat Pearson’s P / degrees of freedom
standardize was the transformation standardized

The predict function returns the numeric value of the transformation performed on new data, and
allows for the inverse transformation as well.

Examples

x <- rgamma(100, 1, 1)

exp_x_obj <- exp_x(x)
exp_x_obj
p <- predict(exp_x_obj)
x2 <- predict(exp_x_obj, newdata = p, inverse = TRUE)

all.equal(x2, x)

lambert Lambert W x F Normalization

Description

Perform Lambert’s W x F transformation and center/scale a vector to attempt normalization via the
LambertW package.

Usage

lambert(x, type = "s", standardize = TRUE, warn = FALSE, ...)

S3 method for class 'lambert'
predict(object, newdata = NULL, inverse = FALSE, ...)

S3 method for class 'lambert'
print(x, ...)

16 lambert

Arguments

x A vector to normalize with Box-Cox

type a character indicating which transformation to perform (options are "s", "h", and
"hh", see details)

standardize If TRUE, the transformed values are also centered and scaled, such that the
transformation attempts a standard normal

warn should the function show warnings

... Additional arguments that can be passed to the LambertW::Gaussianize function

object an object of class ’lambert’

newdata a vector of data to be (reverse) transformed

inverse if TRUE, performs reverse transformation

Details

lambert uses the LambertW package to estimate a normalizing (or "Gaussianizing") transformation.
This transformation can be performed on new data, and inverted, via the predict function.

NOTE: The type = "s" argument is the only one that does the 1-1 transform consistently, and so
it is the only method currently used in bestNormalize(). Use type = "h" or type = ’hh’ at risk
of not having this estimate 1-1 transform. These alternative types are effective when the data has
exceptionally heavy tails, e.g. the Cauchy distribution.

Additionally, sometimes (depending on the distribution) this method will be unable to extrapolate
beyond the observed bounds. In these cases, NaN is returned.

Value

A list of class lambert with elements

x.t transformed original data

x original data

mean mean after transformation but prior to standardization

sd sd after transformation but prior to standardization

tau.mat estimated parameters of LambertW::Gaussianize

n number of nonmissing observations

norm_stat Pearson’s P / degrees of freedom

standardize was the transformation standardized

The predict function returns the numeric value of the transformation performed on new data, and
allows for the inverse transformation as well.

log_x 17

References

Georg M. Goerg (2016). LambertW: An R package for Lambert W x F Random Variables. R
package version 0.6.4.

Georg M. Goerg (2011): Lambert W random variables - a new family of generalized skewed distri-
butions with applications to risk estimation. Annals of Applied Statistics 3(5). 2197-2230.

Georg M. Goerg (2014): The Lambert Way to Gaussianize heavy-tailed data with the inverse of
Tukey’s h transformation as a special case. The Scientific World Journal.

See Also

Gaussianize

Examples

Not run:
x <- rgamma(100, 1, 1)

lambert_obj <- lambert(x)
lambert_obj
p <- predict(lambert_obj)
x2 <- predict(lambert_obj, newdata = p, inverse = TRUE)

all.equal(x2, x)

End(Not run)

log_x Log(x + a) Transformation

Description

Perform a log_b (x+a) normalization transformation

Usage

log_x(x, a = NULL, b = 10, standardize = TRUE, eps = 0.001, warn = TRUE, ...)

S3 method for class 'log_x'
predict(object, newdata = NULL, inverse = FALSE, ...)

S3 method for class 'log_x'
print(x, ...)

18 log_x

Arguments

x A vector to normalize with with x

a The constant to add to x (defaults to max(0, -min(x) + eps)); see bestLogConstant

b The base of the log (defaults to 10)

standardize If TRUE, the transformed values are also centered and scaled, such that the
transformation attempts a standard normal

eps The allowed error in the expression for the selected a

warn Should a warning result from infinite values?

... additional arguments

object an object of class ’log_x’

newdata a vector of data to be (potentially reverse) transformed

inverse if TRUE, performs reverse transformation

Details

log_x performs a simple log transformation in the context of bestNormalize, such that it creates a
transformation that can be estimated and applied to new data via the predict function. The param-
eter a is essentially estimated by the training set by default (estimated as the minimum possible to
some extent epsilon), while the base must be specified beforehand.

Value

A list of class log_x with elements

x.t transformed original data

x original data

mean mean after transformation but prior to standardization

sd sd after transformation but prior to standardization

a estimated a value

b estimated base b value

n number of nonmissing observations

norm_stat Pearson’s P / degrees of freedom

standardize was the transformation standardized

The predict function returns the numeric value of the transformation performed on new data, and
allows for the inverse transformation as well.

Examples

x <- rgamma(100, 1, 1)

log_x_obj <- log_x(x)
log_x_obj
p <- predict(log_x_obj)
x2 <- predict(log_x_obj, newdata = p, inverse = TRUE)

no_transform 19

all.equal(x2, x)

no_transform Identity transformation and center/scale transform

Description

Perform an identity transformation. Admittedly it seems odd to have a dedicated function to es-
sentially do I(x), but it makes sense to keep the same syntax as the other transformations so it
plays nicely with them. As a benefit, the bestNormalize function will also show a comparable nor-
malization statistic for the untransformed data. If standardize == TRUE, center_scale passes to
bestNormalize instead.

Usage

no_transform(x, warn = TRUE, ...)

S3 method for class 'no_transform'
predict(object, newdata = NULL, inverse = FALSE, ...)

S3 method for class 'no_transform'
print(x, ...)

center_scale(x, warn = TRUE, ...)

S3 method for class 'center_scale'
predict(object, newdata = NULL, inverse = FALSE, ...)

S3 method for class 'center_scale'
print(x, ...)

S3 method for class 'no_transform'
tidy(x, ...)

Arguments

x A ‘no_transform‘ object.

warn Should a warning result from infinite values?

... not used

object an object of class ’no_transform’

newdata a vector of data to be (potentially reverse) transformed

inverse if TRUE, performs reverse transformation

20 orderNorm

Details

no_transform creates a identity transformation object that can be applied to new data via the
predict function.

Value

A list of class no_transform with elements

x.t transformed original data

x original data

n number of nonmissing observations

norm_stat Pearson’s P / degrees of freedom

The predict function returns the numeric value of the transformation performed on new data, and
allows for the inverse transformation as well.

Examples

x <- rgamma(100, 1, 1)

no_transform_obj <- no_transform(x)
no_transform_obj
p <- predict(no_transform_obj)
x2 <- predict(no_transform_obj, newdata = p, inverse = TRUE)

all.equal(x2, x)

orderNorm Calculate and perform Ordered Quantile normalizing transformation

Description

The Ordered Quantile (ORQ) normalization transformation, orderNorm(), is a rank-based proce-
dure by which the values of a vector are mapped to their percentile, which is then mapped to the
same percentile of the normal distribution. Without the presence of ties, this essentially guarantees
that the transformation leads to a uniform distribution.

The transformation is:
g(x) = Φ−1((rank(x) − .5)/(length(x)))

Where Φ refers to the standard normal cdf, rank(x) refers to each observation’s rank, and length(x)
refers to the number of observations.

By itself, this method is certainly not new; the earliest mention of it that I could find is in a 1947
paper by Bartlett (see references). This formula was outlined explicitly in Van der Waerden, and
expounded upon in Beasley (2009). However there is a key difference to this version of it, as
explained below.

orderNorm 21

Using linear interpolation between these percentiles, the ORQ normalization becomes a 1-1 trans-
formation that can be applied to new data. However, outside of the observed domain of x, it is
unclear how to extrapolate the transformation. In the ORQ normalization procedure, a binomial
glm with a logit link is used on the ranks in order to extrapolate beyond the bounds of the original
domain of x. The inverse normal CDF is then applied to these extrapolated predictions in order
to extrapolate the transformation. This mitigates the influence of heavy-tailed distributions while
preserving the 1-1 nature of the transformation. The extrapolation will provide a warning unless
warn = FALSE.) However, we found that the extrapolation was able to perform very well even on
data as heavy-tailed as a Cauchy distribution (paper to be published).

The fit used to perform the extrapolation uses a default of 10000 observations (or length(x) if that
is less). This added approximation improves the scalability, both computationally and in terms of
memory used. Do not set this value to be too low (e.g. <100), as there is no benefit to doing so.
Increase if your test data set is large relative to 10000 and/or if you are worried about losing signal
in the extremes of the range.

This transformation can be performed on new data and inverted via the predict function.

Usage

orderNorm(x, n_logit_fit = min(length(x), 10000), ..., warn = TRUE)

S3 method for class 'orderNorm'
predict(object, newdata = NULL, inverse = FALSE, warn = TRUE, ...)

S3 method for class 'orderNorm'
print(x, ...)

Arguments

x A vector to normalize

n_logit_fit Number of points used to fit logit approximation

... additional arguments

warn transforms outside observed range or ties will yield warning

object an object of class ’orderNorm’

newdata a vector of data to be (reverse) transformed

inverse if TRUE, performs reverse transformation

Value

A list of class orderNorm with elements

x.t transformed original data

x original data

n number of nonmissing observations

ties_status indicator if ties are present

fit fit to be used for extrapolation, if needed

22 plot.bestNormalize

norm_stat Pearson’s P / degrees of freedom

The predict function returns the numeric value of the transformation performed on new data, and
allows for the inverse transformation as well.

References

Bartlett, M. S. "The Use of Transformations." Biometrics, vol. 3, no. 1, 1947, pp. 39-52. JSTOR
www.jstor.org/stable/3001536.

Van der Waerden BL. Order tests for the two-sample problem and their power. 1952;55:453-458.
Ser A.

Beasley TM, Erickson S, Allison DB. Rank-based inverse normal transformations are increasingly
used, but are they merited? Behav. Genet. 2009;39(5): 580-595. pmid:19526352

See Also

boxcox, lambert, bestNormalize, yeojohnson

Examples

x <- rgamma(100, 1, 1)

orderNorm_obj <- orderNorm(x)
orderNorm_obj
p <- predict(orderNorm_obj)
x2 <- predict(orderNorm_obj, newdata = p, inverse = TRUE)

all.equal(x2, x)

plot.bestNormalize Transformation plotting

Description

Plots transformation functions for objects produced by the bestNormalize package

Usage

S3 method for class 'bestNormalize'
plot(
x,
inverse = FALSE,
bounds = NULL,
cols = NULL,
methods = NULL,
leg_loc = "top",
...

sqrt_x 23

)

S3 method for class 'orderNorm'
plot(x, inverse = FALSE, bounds = NULL, ...)

S3 method for class 'boxcox'
plot(x, inverse = FALSE, bounds = NULL, ...)

S3 method for class 'yeojohnson'
plot(x, inverse = FALSE, bounds = NULL, ...)

S3 method for class 'lambert'
plot(x, inverse = FALSE, bounds = NULL, ...)

Arguments

x a fitted transformation

inverse if TRUE, plots the inverse transformation

bounds a vector of bounds to plot for the transformation

cols a vector of colors to use for the transforms (see details)

methods a vector of transformations to plot

leg_loc the location of the legend on the plot

... further parameters to be passed to plot and lines

Details

The plots produced by the individual transformations are simply plots of the original values by the
newly transformed values, with a line denoting where transformations would take place for new
data.

For the bestNormalize object, this plots each of the possible transformations run by the original
call to bestNormalize. The first argument in the "cols" parameter refers to the color of the chosen
transformation.

sqrt_x sqrt(x + a) Normalization

Description

Perform a sqrt (x+a) normalization transformation

24 sqrt_x

Usage

sqrt_x(x, a = NULL, standardize = TRUE, ...)

S3 method for class 'sqrt_x'
predict(object, newdata = NULL, inverse = FALSE, ...)

S3 method for class 'sqrt_x'
print(x, ...)

Arguments

x A vector to normalize with with x

a The constant to add to x (defaults to max(0, -min(x)))

standardize If TRUE, the transformed values are also centered and scaled, such that the
transformation attempts a standard normal

... additional arguments

object an object of class ’sqrt_x’

newdata a vector of data to be (potentially reverse) transformed

inverse if TRUE, performs reverse transformation

Details

sqrt_x performs a simple square-root transformation in the context of bestNormalize, such that it
creates a transformation that can be estimated and applied to new data via the predict function.
The parameter a is essentially estimated by the training set by default (estimated as the minimum
possible), while the base must be specified beforehand.

Value

A list of class sqrt_x with elements

x.t transformed original data

x original data

mean mean after transformation but prior to standardization

sd sd after transformation but prior to standardization

n number of nonmissing observations

norm_stat Pearson’s P / degrees of freedom

standardize was the transformation standardized

The predict function returns the numeric value of the transformation performed on new data, and
allows for the inverse transformation as well.

step_best_normalize 25

Examples

x <- rgamma(100, 1, 1)

sqrt_x_obj <- sqrt_x(x)
sqrt_x_obj
p <- predict(sqrt_x_obj)
x2 <- predict(sqrt_x_obj, newdata = p, inverse = TRUE)

all.equal(x2, x)

step_best_normalize Run bestNormalize transformation for recipes implementation

Description

‘step_best_normalize‘ creates a specification of a recipe step (see ‘recipes‘ package) that will trans-
form data using the best of a suite of normalization transformations estimated (by default) using
cross-validation.

Usage

step_best_normalize(
recipe,
...,
role = NA,
trained = FALSE,
transform_info = NULL,
transform_options = list(),
num_unique = 5,
skip = FALSE,
id = rand_id("best_normalize")

)

S3 method for class 'step_best_normalize'
tidy(x, ...)

S3 method for class 'step_best_normalize'
axe_env(x, ...)

Arguments

recipe A formula or recipe

... One or more selector functions to choose which variables are affected by the
step. See [selections()] for more details. For the ‘tidy‘ method, these are not
currently used.

role Not used by this step since no new variables are created.

26 step_best_normalize

trained For recipes functionality

transform_info A numeric vector of transformation values. This (was transform_info) is ‘NULL‘
until computed by [prep.recipe()].

transform_options

options to be passed to bestNormalize

num_unique An integer where data that have less possible values will not be evaluate for a
transformation.

skip For recipes functionality

id For recipes functionality

x A ‘step_best_normalize‘ object.

Details

The bestnormalize transformation can be used to rescale a variable to be more similar to a normal
distribution. See ‘?bestNormalize‘ for more information; ‘step_best_normalize‘ is the implementa-
tion of ‘bestNormalize‘ in the ‘recipes‘ context.

As of version 1.7, the ‘butcher‘ package can be used to (hopefully) improve scalability of this
function on bigger data sets.

Value

An updated version of ‘recipe‘ with the new step added to the sequence of existing steps (if any).
For the ‘tidy‘ method, a tibble with columns ‘terms‘ (the selectors or variables selected) and ‘value‘
(the lambda estimate).

See Also

bestNormalize orderNorm, [recipe()] [prep.recipe()] [bake.recipe()]

Examples

library(recipes)
rec <- recipe(~ ., data = as.data.frame(iris))

bn_trans <- step_best_normalize(rec, all_numeric())

bn_estimates <- prep(bn_trans, training = as.data.frame(iris))

bn_data <- bake(bn_estimates, as.data.frame(iris))

plot(density(iris[, "Petal.Length"]), main = "before")
plot(density(bn_data$Petal.Length), main = "after")

tidy(bn_trans, number = 1)
tidy(bn_estimates, number = 1)

step_orderNorm 27

step_orderNorm ORQ normalization (orderNorm) for recipes implementation

Description

‘step_orderNorm‘ creates a specification of a recipe step (see ‘recipes‘ package) that will trans-
form data using the ORQ (orderNorm) transformation, which approximates the "true" normalizing
transformation if one exists. This is considerably faster than ‘step_bestNormalize‘.

Usage

step_orderNorm(
recipe,
...,
role = NA,
trained = FALSE,
transform_info = NULL,
transform_options = list(),
num_unique = 5,
skip = FALSE,
id = rand_id("orderNorm")

)

S3 method for class 'step_orderNorm'
tidy(x, ...)

S3 method for class 'step_orderNorm'
axe_env(x, ...)

Arguments

recipe A formula or recipe
... One or more selector functions to choose which variables are affected by the

step. See [selections()] for more details. For the ‘tidy‘ method, these are not
currently used.

role Not used by this step since no new variables are created.
trained For recipes functionality
transform_info A numeric vector of transformation values. This (was transform_info) is ‘NULL‘

until computed by [prep.recipe()].
transform_options

options to be passed to orderNorm
num_unique An integer where data that have less possible values will not be evaluate for a

transformation.
skip For recipes functionality
id For recipes functionality
x A ‘step_orderNorm‘ object.

28 yeojohnson

Details

The orderNorm transformation can be used to rescale a variable to be more similar to a normal
distribution. See ‘?orderNorm‘ for more information; ‘step_orderNorm‘ is the implementation of
‘orderNorm‘ in the ‘recipes‘ context.

As of version 1.7, the ‘butcher‘ package can be used to (hopefully) improve scalability of this
function on bigger data sets.

Value

An updated version of ‘recipe‘ with the new step added to the sequence of existing steps (if any).
For the ‘tidy‘ method, a tibble with columns ‘terms‘ (the selectors or variables selected) and ‘value‘
(the lambda estimate).

References

Ryan A. Peterson (2019). Ordered quantile normalization: a semiparametric transformation built
for the cross-validation era. Journal of Applied Statistics, 1-16.

See Also

orderNorm bestNormalize, [recipe()] [prep.recipe()] [bake.recipe()]

Examples

library(recipes)
rec <- recipe(~ ., data = as.data.frame(iris))

orq_trans <- step_orderNorm(rec, all_numeric())

orq_estimates <- prep(orq_trans, training = as.data.frame(iris))

orq_data <- bake(orq_estimates, as.data.frame(iris))

plot(density(iris[, "Petal.Length"]), main = "before")
plot(density(orq_data$Petal.Length), main = "after")

tidy(orq_trans, number = 1)
tidy(orq_estimates, number = 1)

yeojohnson Yeo-Johnson Normalization

Description

Perform a Yeo-Johnson Transformation and center/scale a vector to attempt normalization

yeojohnson 29

Usage

yeojohnson(x, eps = 0.001, standardize = TRUE, ...)

S3 method for class 'yeojohnson'
predict(object, newdata = NULL, inverse = FALSE, ...)

S3 method for class 'yeojohnson'
print(x, ...)

Arguments

x A vector to normalize with Yeo-Johnson

eps A value to compare lambda against to see if it is equal to zero

standardize If TRUE, the transformed values are also centered and scaled, such that the
transformation attempts a standard normal

... Additional arguments that can be passed to the estimation of the lambda param-
eter (lower, upper)

object an object of class ’yeojohnson’

newdata a vector of data to be (reverse) transformed

inverse if TRUE, performs reverse transformation

Details

yeojohnson estimates the optimal value of lambda for the Yeo-Johnson transformation. This trans-
formation can be performed on new data, and inverted, via the predict function.

The Yeo-Johnson is similar to the Box-Cox method, however it allows for the transformation of
nonpositive data as well. The step_YeoJohnson function in the recipes package is another useful
resource (see references).

Value

A list of class yeojohnson with elements

x.t transformed original data

x original data

mean mean after transformation but prior to standardization

sd sd after transformation but prior to standardization

lambda estimated lambda value for skew transformation

n number of nonmissing observations

norm_stat Pearson’s P / degrees of freedom

standardize Was the transformation standardized

The predict function returns the numeric value of the transformation performed on new data, and
allows for the inverse transformation as well.

30 yeojohnson

References

Yeo, I. K., & Johnson, R. A. (2000). A new family of power transformations to improve normality
or symmetry. Biometrika.

Max Kuhn and Hadley Wickham (2017). recipes: Preprocessing Tools to Create Design Matrices.
R package version 0.1.0.9000. https://github.com/topepo/recipes

Examples

x <- rgamma(100, 1, 1)

yeojohnson_obj <- yeojohnson(x)
yeojohnson_obj
p <- predict(yeojohnson_obj)
x2 <- predict(yeojohnson_obj, newdata = p, inverse = TRUE)

all.equal(x2, x)

Index

∗ datasets
autotrader, 4

∗ preprocessing
step_best_normalize, 25
step_orderNorm, 27

∗ transformation_methods
step_best_normalize, 25
step_orderNorm, 27

_PACKAGE (bestNormalize-package), 2

arcsinh_x, 3
autotrader, 4
axe_env.step_best_normalize

(step_best_normalize), 25
axe_env.step_orderNorm

(step_orderNorm), 27

bestLogConstant, 5
bestNormalize, 6, 6, 22, 26, 28
bestNormalize-package, 2
binarize, 10
boxcox, 9, 11, 12, 22

center_scale (no_transform), 19

double_reverse_log, 12

exp_x, 14

Gaussianize, 17

lambert, 15, 22
log_x, 6, 17

no_transform, 19

orderNorm, 9, 20, 26, 28

plot.bestNormalize, 22
plot.boxcox (plot.bestNormalize), 22
plot.lambert (plot.bestNormalize), 22

plot.orderNorm (plot.bestNormalize), 22
plot.yeojohnson (plot.bestNormalize), 22
predict.arcsinh_x (arcsinh_x), 3
predict.bestLogConstant

(bestLogConstant), 5
predict.bestNormalize (bestNormalize), 6
predict.binarize (binarize), 10
predict.boxcox (boxcox), 11
predict.center_scale (no_transform), 19
predict.double_reverse_log

(double_reverse_log), 12
predict.exp_x (exp_x), 14
predict.lambert (lambert), 15
predict.log_x (log_x), 17
predict.no_transform (no_transform), 19
predict.orderNorm (orderNorm), 20
predict.sqrt_x (sqrt_x), 23
predict.yeojohnson (yeojohnson), 28
print.arcsinh_x (arcsinh_x), 3
print.bestLogConstant

(bestLogConstant), 5
print.bestNormalize (bestNormalize), 6
print.binarize (binarize), 10
print.boxcox (boxcox), 11
print.center_scale (no_transform), 19
print.double_reverse_log

(double_reverse_log), 12
print.exp_x (exp_x), 14
print.lambert (lambert), 15
print.log_x (log_x), 17
print.no_transform (no_transform), 19
print.orderNorm (orderNorm), 20
print.sqrt_x (sqrt_x), 23
print.yeojohnson (yeojohnson), 28

sqrt_x, 23
step_best_normalize, 25
step_bestNormalize

(step_best_normalize), 25

31

32 INDEX

step_bestNormalize_new
(step_best_normalize), 25

step_orderNorm, 27

tidy.bestNormalize (bestNormalize), 6
tidy.no_transform (no_transform), 19
tidy.step_best_normalize

(step_best_normalize), 25
tidy.step_orderNorm (step_orderNorm), 27

yeojohnson, 9, 22, 28

	bestNormalize-package
	arcsinh_x
	autotrader
	bestLogConstant
	bestNormalize
	binarize
	boxcox
	double_reverse_log
	exp_x
	lambert
	log_x
	no_transform
	orderNorm
	plot.bestNormalize
	sqrt_x
	step_best_normalize
	step_orderNorm
	yeojohnson
	Index

