Package ‘autoCovariateSelection’

October 12, 2022

Type Package

Title Automated Covariate Selection Using HDPS Algorithm
Version 1.0.0

Author Dennis Robert <dennis.robert.nm@egmail.com>
Maintainer Dennis Robert <dennis.robert.nm@gmail.com>

Description
Contains functions to implement automated covariate selection using methods described in the
high-dimensional propensity score (HDPS) algorithm by Schneeweiss et.al. Covariate adjust-
ment in real-world-observational-data (RWD) is important for
for estimating adjusted outcomes and this can be done by using methods such as, but not lim-
ited to, propensity score
matching, propensity score weighting and regression analysis. While these methods strive to sta-
tistically adjust for
confounding, the major challenge is in selecting the potential covariates that can bias the out-
comes comparison estimates
in observational RWD (Real-World-
Data). This is where the utility of automated covariate selection comes in.
The functions in this package help to implement the three major steps of automated covariate se-
lection as described by
Schneeweiss et. al elsewhere. These three functions, in order of the steps required to execute au-
tomated covariate
selection are, get_candidate_covariates(), get_recurrence_covariates() and get_prioritised_covariates().
In addition to these functions, a sample real-world-data from publicly available de-
identified medical claims data is
also available for running examples and also for further exploration. The original arti-
cle where the algorithm is described
by Schneeweiss et.al. (2009) <doi:10.1097/EDE.Ob013e3181a663cc> .

License MIT + file LICENSE
Encoding UTF-8
LazyData true

URL https://github.com/technOslerphile/autoCovariateSelection

BugReports https://github.com/technOslerphile/autoCovariateSelection/issues

1

https://doi.org/10.1097/EDE.0b013e3181a663cc
https://github.com/technOslerphile/autoCovariateSelection
https://github.com/technOslerphile/autoCovariateSelection/issues

2 get_candidate_covariates

Imports purrr, data.table

Depends dplyr, R (>=2.10)

RoxygenNote 7.1.1

Suggests testthat

NeedsCompilation no

Repository CRAN

Date/Publication 2020-12-14 09:50:11 UTC

R topics documented:

get_candidate_covariates e e e e 2
get_prioritised_covariates 4
EL_TECUITENCE_COVATIAtES v v v v it e e et e et e e e e e 7
get_relative_risk oL 9
WA . e e e 10
Index 11

get_candidate_covariates

Generate candidate empirical baseline covariates based on preva-
lence in the baseline period

Description

get_candidate_covariates function generates the list of candidate empirical covariates based on
their prevalence within each domains (dimensions). This is the first step in the automated covariate
selection process. See ’Automated Covariate Selection’ section below for more details regarding
the overall process.

Usage

get_candidate_covariates(
df,
domainVarname,
eventCodeVarname,
patientIdVarname,
patientIdVector,
n = 200,
min_num_patients = 100

get_candidate_covariates 3

Arguments

df

domainVarname

The input data. frame. This should contain at least 3 fields containing informa-
tion on patient identifier, covariate codes and domain names of covariate codes
in a long format. Any other fields containing values such as dates, treatment
group are optional and will be ignored for this analysis

The variable(field) name which contains the domain of the covariate in the df.
The domains are usually diagnosis, procedures and medications.

eventCodeVarname

The variable name which contains the covariate codes (eg:- CCS, ICD9) in the
df

patientIdVarname

patientIdVector

The variable name which contains the patient identifier in the df

The 1-D vector with all the patient identifiers. The length of this vector should
be equal to the number of distinct patients in the df. This vector is not really
used in the function analysis per se. This is used only to return the same back as
function output because the filtered df based on covars will likely not contain
all patients in the input df because there could be patients for whom no records
were found for any of the identified covars and they will thus be not present in
the filtered df which is also an output of this function. The patientIds vector
output will contain all original patients and by returning this vector, it can later
be used in the next steps of automated covariate selection because each step is
dependent on previous steps and information on patients who did not have any
identified covars is also important for the next steps. This is why this vector is
an input as well as an output, without affecting the analysis of this function.

The maximum number of empirical candidate baseline covariates that should be
returned within each domain. By default, n is 200

min_num_patients

Details

Minimum number of patients that should be present for each covariate to be
selected for selection. To be considered for selection, a covariate should have
occurred for a minimum min_num_patients in the baseline period

The theoretical details of the high-dimensional propensity score (HDPS) algorithm is detailed in
the publication listed below in the References section. get_candidate_covariates is the func-
tion implementing what is described in the *Identify candidate empirical covariates’ section of the

article.

Value

A named list containing three R objects

* covars A 1-D vector containing the names of selected baseline covariate names from each
domain. For each domain in the df, the number of covars would be equal to or less than n

» covars_data The data. frame that is filtered out of df with only the selected covars. The
values of the eventCodeVarname field is prefixed with the corresponding domain name. For

4 get_prioritised_covariates

example, if the event code is 19900 and the domain is ’dx’, then the the covariate name will
be ’dx_19900’.

* patientIds The list of patient ids present in the original input df. This is exactly the same as
the input patientIdVector

Automated Covariate Selection

The three steps in automated covariate selection are listed below with the functions imple-
menting the methodology

1. Identify candidate empirical covariates: get_candidate_covariates
2. Assess recurrence: get_recurrence_covariates

3. Prioritize covariates: get_prioritised_covariates

Author(s)

Dennis Robert <dennis.robert.nm@gmail.com>

References

Schneeweiss S, Rassen JA, Glynn RJ, Avorn J, Mogun H, Brookhart MA. High-dimensional propen-
sity score adjustment in studies of treatment effects using health care claims data Epidemiology.
2009;20(4):512-522. doi:10.1097/EDE.Ob013e3181a663cc

Examples

library("autoCovariateSelection"”)

data(rwd)

head(rwd, 3)

#select distinct elements that are unique for each patient - treatment and outcome
basetable <- rwd %>% select(person_id, treatment, outcome_date) %>% distinct()
head(basetable, 3)

patientIds <- basetable$person_id

stepl <- get_candidate_covariates(df = rwd, domainVarname = "domain",
eventCodeVarname = "event_code”, patientIdVarname = "person_id",

patientIdVector = patientIds,n = 100, min_num_patients = 10)

outl <- stepl$covars_data #this will be input to get_recurrence_covariates() function

get_prioritised_covariates
Generate the prioritised covariates from the global list of binary re-
currence covariates using multiplicative bias ranking

get_prioritised_covariates 5

Description

get_prioritised_covariates function assesses the recurrence of each of the identified candi-
date empirical covariates based on their frequency of occurrence for each patient in the baseline
period and generates three binary recurrence covariates for each of the identified candidate empir-
ical covariates. This is the third and final step in the automated covariate selection process. The
previous step of assessing recurrence and generating the binary recurrence covariates is done using
the get_recurrence_covariates function. See ’Automated Covariate Selection’section below for
more details regarding the overall process.

Usage
get_prioritised_covariates(
df,
patientIdVarname,
exposureVector,
outcomeVector,
patientIdVector,
k = 500
)
Arguments
df The input data.frame. Ideally this should be the output recurrence_data
from the get_recurrence_covariates function
patientIdVarname
The variable name which contains the patient identifier in the df
exposureVector The 1-D exposure (treatment/intervention) vector. The length of this vector
should be equal to that of patientIdVector and outcomeVector. Also, this
should be a binary vector with value of 1 for patients primary cohort 1 and 0 for
those in comparator cohort. The order of this vector should resonate the order
of patients in outcomeVector and patientIdVector
outcomeVector The 1-D outcome vector indicating whether or not the patient experienced the
outcome of interest (value = 1) or not (value =0). The length of this vec-
tor should be equal to that of patientIdVector and exposureVector. The
order of elements in this vector should resonate with the order of patients in
exposureVector and patientIdVector
patientIdVector
The 1-D vector with all the patient identifiers. This should contain all the patient
IDs in the original two cohorts with its length and order equal to and resonating
with that of exposureVector and outcomeVector
k The maximum number of prioritised covariates that should be returned by the
function. By default, this is 500 as described in the original paper
Details

To prioritise covariates across data dimensions (domains) should be assessed by their potential for
controlling confounding that is not conditional on exposure and other covariates. This means that

6 get_prioritised_covariates

the association of the covariates with the outcomes (relative risk) should be taken into consideration
for quantifying the ’potential’ for confounding. Relative risk weighted by the ratio of prevalence
of the covariates between the two exposure groups is known as multiplicative bias. The other way
to do this would be to use the absolute risk and this would have been the rather straight-forward
procedure to quantify the potential for confounding. However, this method would invariably down-
weight the association between the covariate and the outcome if the outcome prevalence is small and
the exposure prevalence is high which is a common phenomenon seen with comparative effective
research using real-world-data by retrospective cohort studies. The multiplicative bias term balances
this and generates a quantity for each covariate that is reflective of its confounding potential. By
ranking the multiplicative bias, the objective is to choose the top k number of covariates from
this procedure. k, by default, is 500 as described in the original paper. For further theoretical
details of the algorithm please refer to the original article listed below in the References section.
get_recurrence_covariates is the function implementing what is described in the ’Prioritise
Covariates’ section of the article.

Value
A named list containing two R objects

* autoselected_covariate_df A data.frame in wide format containing the auto-selected
prioritised covariates and their values (1 or 0) for each patients

e multiplicative_biasThe absolute log of the multiplicative bias term for each of the auto-
selected prioritised covariates

Automated Covariate Selection

The three steps in automated covariate selection are listed below with the functions imple-
menting the methodology

1. Identify candidate empirical covariates: get_candidate_covariates

2. Assess recurrence: get_recurrence_covariates

3. Prioritize covariates: get_prioritised_covariates

Author(s)

Dennis Robert <dennis.robert.nm@gmail.com>

References

Schneeweiss S, Rassen JA, Glynn RJ, Avorn J, Mogun H, Brookhart MA. High-dimensional propen-
sity score adjustment in studies of treatment effects using health care claims data Epidemiology.
2009;20(4):512-522. doi:10.1097/EDE.Ob013e3181a663cc

Examples

library("autoCovariateSelection”)

data(rwd)

head(rwd, 3)

basetable <- rwd %>% select(person_id, treatment, outcome_date) %>% distinct()
head(basetable, 3)

get_recurrence_covariates 7

patientIds <- basetable$person_id

stepl <- get_candidate_covariates(df = rwd, domainVarname = "domain",
eventCodeVarname = "event_code” , patientIdVarname = "person_id",
patientIdVector = patientIds,n = 100, min_num_patients = 10)

outl <- stepl$covars_data

all.equal(patientIds, stepl$patientIds) #should be TRUE

step2 <- get_recurrence_covariates(df = outT,

patientIdVarname = "person_id"”, eventCodeVarname = "event_code",
patientIdVector = patientIds)

out2 <- step2$recurrence_data

out3 <- get_prioritised_covariates(df = out2,

patientIdVarname = "person_id"”, exposureVector = basetable$treatment,
outcomeVector = ifelse(is.na(basetable$outcome_date), 0,1),
patientIdVector = patientlds, k = 10)

get_recurrence_covariates
Generate the binary recurrence covariates for the identified candidate
empirical covariates

Description

get_recurrence_covariates function assesses the recurrence of each of the identified candidate
empirical covariates based on their frequency of occurrence for each patient in the baseline period
and generates three binary recurrence covariates for each of the identified candidate empirical co-
variates. This is the second step in the automated covariate selection process. The first step of
identifying empirical candidate covariates is done via get_candidate_covariates function. See
’ Automated Covariate Selection’section below for more details regarding the overall process.

Usage

get_recurrence_covariates(
df,
patientIdVarname,
eventCodeVarname,
patientIdVector

Arguments

df The input data.frame. Ideally this should be the output covars_data from
get_candidate_covariates
patientIdVarname
The variable name which contains the patient identifier in the df
eventCodeVarname

The variable name which contains the covariate codes (eg:- CCS, ICD9) in the
df

8 get_recurrence_covan’ates

patientIdVector
The 1-D vector with all the patient identifiers. This should contain all the patient
IDs in the original two cohorts. This vector can simply be the patientIds
output vector of the get_candidate_covariates function. of the function

Details

The recurrence covariates are generated based on the frequency (counts) of occurrence of each em-
pirical candidate covariates that got generated by the generate_candidate_covariates function.
This is done by looking at the baseline period of each patients and assessing whether the covariate
occurred only once or sporadically or frequently. That is, a maximum of three recurrence covariates
for each candidate covariate is created and returned.

* once Indicates whether or not the covariate occurred more than or equal to 1 number of times
for the patient

* sporadic Indicates whether or not the covariate occurred more than or equal to median (me-
dian of non-zero occurrences of the candidate covariate) number of times for the patient.

» frequent Indicates whether or not the covariate occurred more than or equal to upper quartile
(75th percentile of non-zero occurrences of the candidate covariate) number of times for the
patient

Note that if two or all three covariates are identical for any of the binary recurrence covariates, only
the distinct recurrence covariate is returned. For example, if once == sporadic == frequent for the
candidate covariate (median and upper quartile both are 1), then only the ’once’ recurrence covariate
is returned. If once != sporadic == frequent, then once’ and ’sporadic’ is returned. If once ==
sporadic != frequent, then *once’ and ’frequent’ are returned. If none of three recurrence covariates
are identical, then all three are returned. The theoretical details of the algorithm implemented is
detailed in the publication listed below in the References section. get_recurrence_covariates
is the function implementing what is described in the *Assess Recurrence’ section of the article.

Value
A named list containing two R objects

* recurrence_data A data.frame containing all the binary recurrence covariates for all the
patients in wide format. This means that this data. frame will have a dimension with number
of rows equal to number of distinct patients and number of columns equal to number of binary
recurrence covariates plus 1 (for the patient Id variable). The binary recurrence covariate is
prefixed with a ’rec_’ to indicate that the covariate is a 'reccurrence covariate’ and suffixed

with ’_once’, ’_sporadic’ or ’_frequent’. See details section above for details.

* patientIds The list of patient ids present in the original input df. This is exactly the same as
the input patientIdVector

Automated Covariate Selection

The three steps in automated covariate selection are listed below with the functions imple-
menting the methodology

1. Identify candidate empirical covariates: get_candidate_covariates

2. Assess recurrence: get_recurrence_covariates

3. Prioritize covariates: get_prioritised_covariates

get_relative_risk 9

Author(s)

Dennis Robert <dennis.robert.nm@gmail.com>

References

Schneeweiss S, Rassen JA, Glynn RJ, Avorn J, Mogun H, Brookhart MA. High-dimensional propen-
sity score adjustment in studies of treatment effects using health care claims data Epidemiology.
2009;20(4):512-522. doi:10.1097/EDE.Ob013e3181a663cc

Examples

library("autoCovariateSelection")

data(rwd)

head(rwd, 3)

basetable <- rwd %>% select(person_id, treatment, outcome_date) %>% distinct()
head(basetable, 3)

patientIds <- basetable$person_id

stepl <- get_candidate_covariates(df = rwd, domainVarname = "domain",
eventCodeVarname = "event_code” , patientIdVarname = "person_id",
patientIdVector = patientlds,n = 100, min_num_patients = 10)

outl <- stepl$covars_data

all.equal(patientIds, stepi$patientIds) #should return TRUE

step2 <- get_recurrence_covariates(df = outl, patientIdVarname = "person_id",
eventCodeVarname = "event_code”, patientIdVector = patientIds)

out2 <- step2$recurrence_data

get_relative_risk Compute relative risk for each of the covariates with respect to out-
comes occurred

Description

get_relative_risk function is a helper function used within the get_prioritised_covariates
function. This function computes the prevalence in the exposed and that in the unexposed and
simply returns the relative risk for all the covariates in the input data. frame

Usage

get_relative_risk(df, outcomeVec)

Arguments

df The input data.frame. Ideally this should be the output recurrence_data
from the get_recurrence_covariates function. The first column should be
the patient identifier column and all other columns should be binary covariates.
The values of these binary columns should be 1 indicating occurrence of covari-
ate and 0 indicating no occurrence of the covariate.

10 rwd
outcomeVec The 1-D outcome vector indicating whether or not the patient experienced the
outcome of interest (value = 1) or not (value =0). The length of this vector
should be equal to the number of rows of df. The order of elements in this
vector should resonate with the order of patients in df
Value

A 1-D vector containing relative risk of the association between the covariate (confounder) and the
outcome. Thus, the length of this vector will be equal to the number of covariates.

Author(s)

Dennis Robert <dennis.robert.nm@gmail.com>

rwd Sample Data for autoCovariateSelection

Description

This is data contains Medicare claims data of a small sample of 1000 patients from the publicly
available CMS Medicare De-SynPUF data. It contains all data from three domains - diagnosis,
procedures and medications. The diagnosis codes are ICD9 codes, procedures are CPT4/HCPCS
codes and medications are NDC codes.

Usage

rwd

Format

A data frame with 69333 rows and 9 variables:

person_id patient_identifier
index_date Date of first exposure. For one patient, there will only be one index_date
event_date Date at which event_code occurred for the patient

event_code The medical coding of the event. These are ICD9, CPT4, HCPCS or NDC codes
depending on the domain

event_concept_id Another identifier for the event_code. This is irrelevant for this package and
you can ignore it

domain The domain to which the event_code belongs to. The three unique values are dx (for
diagnosis), px (for procedure) and rx (for medication)

treatment Binary indicator treatment allocation based on exposure. 1 indicates primary cohort and
0 for control/comparator cohort

outcome_date Date in which the outcome occurred. NA indicates no outcome occurred. In this
sample data, the outcome is death

last_enrollment_date Last enrolled date of the patient. This field is irrelevant for this package and
you can ignore it ...

Index

x datasets
rwd, 10

get_candidate_covariates, 2, 4, 6-8
get_prioritised_covariates, 4,4,6,8, 9
get_recurrence_covariates, 4-6,7,8, 9
get_relative_risk, 9

rwd, 10

11

	get_candidate_covariates
	get_prioritised_covariates
	get_recurrence_covariates
	get_relative_risk
	rwd
	Index

