## ---- eval=TRUE, echo=FALSE--------------------------------------------------- library(adnuts) ## ----------------------------------------------------------------------------- fit <- readRDS('fit.RDS') print(fit) summary(fit$monitor$n_eff) summary(fit$monitor$Rhat) ## ----------------------------------------------------------------------------- post <- extract_samples(fit) str(post[,1:5]) sp <- extract_sampler_params(fit) str(sp) ## ---- eval=FALSE, echo=TRUE--------------------------------------------------- # post <- extract_samples(fit, as.list=TRUE) # postlist <- coda::mcmc.list(lapply(post, coda::mcmc)) # coda::traceplot(postlist) ## ---- eval=FALSE, echo=TRUE--------------------------------------------------- # library(bayesplot) # library(dplyr) # library(tidyr) # library(ggplot2) # color_scheme_set("red") # np <- extract_sampler_params(fit) %>% # pivot_longer(-c(chain, iteration), names_to='Parameter', values_to='Value') %>% # select(Iteration=iteration, Parameter, Value, Chain=chain) %>% # mutate(Parameter=factor(Parameter), # Iteration=as.integer(Iteration), # Chain=as.integer(Chain)) %>% as.data.frame() # mcmc_nuts_energy(np) + ggtitle("NUTS Energy Diagnostic") + theme_minimal() ## ----fig1, fig.width=6, fig.height=4.5---------------------------------------- plot_marginals(fit, pars=1:9) ## ----fig2, fig.width=6, fig.height=4.5---------------------------------------- pairs_admb(fit, pars=1:3, order='slow') pairs_admb(fit, pars=c('sigmaphi', 'sigmap', 'sigmayearphi'))