## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = FALSE ) ## ----setup-------------------------------------------------------------------- # library(Tivy) ## ----------------------------------------------------------------------------- # # Basic distance calculation # distances <- coast_distance( # lon = your_data$longitude, # lat = your_data$latitude, # distance_type = "haversine", # unit = "nm" # ) # # # With custom coastline data # distances <- coast_distance( # lon = your_data$longitude, # lat = your_data$latitude, # coastline = custom_coastline, # unit = "km" # ) ## ----------------------------------------------------------------------------- # # Convert DMS to decimal degrees # decimal_coords <- dms_to_decimal( # coordinates = c("15°30'S", "75°45'W"), # hemisphere = "S", # correct_errors = TRUE # ) # # # Handle coordinate errors automatically # problematic_coords <- c("15°70'S", "invalid") # Invalid minutes # corrected <- dms_to_decimal( # coordinates = problematic_coords, # correct_errors = TRUE # ) ## ----------------------------------------------------------------------------- # # Classify points # classification <- land_points( # x_point = your_data$longitude, # y_point = your_data$latitude, # parallel = TRUE, # cores = 2 # ) ## ----------------------------------------------------------------------------- # # Load Peru coastline # data("peru_coastline") # # # Use in calculations # distances <- coast_distance( # lon = c(-77.0, -76.5), # lat = c(-12.0, -11.5), # coastline = peru_coastline # ) ## ----------------------------------------------------------------------------- # # Add distance categories to your data # enhanced_data <- add_variables( # data = your_data, # distance_type = "haversine", # unit = "nm" # ) # # # The function adds: # # - dc: distance to coast # # - dc_cat: distance categories (05-15 nm, 15-30 nm, etc.) ## ----------------------------------------------------------------------------- # # Enable parallel processing # distances <- coast_distance( # lon = large_dataset$longitude, # lat = large_dataset$latitude, # parallel = TRUE, # cores = 4 # ) ## ----------------------------------------------------------------------------- # # Plot fishing zones (if you have zone data) # plot_fishing_zones( # data = zone_data, # coastline = peru_coastline, # type = "static", # title = "Fishing Zones" # )