## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = FALSE ) ## ----setup-------------------------------------------------------------------- # library(Tivy) ## ----------------------------------------------------------------------------- # # Calculate juvenile percentages # juvenile_results <- summarize_juveniles_by_group( # data = your_length_data, # group_cols = c("date", "fishing_zone"), # length_cols = c("8", "9", "10", "11", "12", "13"), # juvenile_limit = 12, # Size threshold in cm # a = 0.0012, # Length-weight coefficient # b = 3.1242 # Length-weight exponent # ) ## ----------------------------------------------------------------------------- # # Calculate fish weights from lengths # weights <- calculate_fish_weight( # length = c(8, 10, 12, 14), # a = 0.0048, # Coefficient for anchoveta # b = 3.067 # Exponent for anchoveta # ) # # # Apply catch weighting to length frequencies # weighted_data <- apply_catch_weighting( # data = your_data, # length_cols = c("8", "9", "10", "11", "12"), # catch_col = "total_catch", # a = 0.0048, # b = 3.067 # ) ## ----------------------------------------------------------------------------- # # Single sample calculation # juv_percent <- calculate_juvenile_percentage( # frequency = c(10, 25, 40, 30, 15), # Frequencies by length # length = c(8, 9, 10, 11, 12), # Length classes # juvenile_limit = 10 # Juvenile threshold # ) # # # Get length ranges from frequency data # min_length <- get_length_range( # frequency = c(0, 5, 10, 20, 15, 0), # length = c(8, 9, 10, 11, 12, 13), # type = "min" # ) ## ----------------------------------------------------------------------------- # # Convert frequency data to weight # weight_data <- convert_numbers_to_weight( # data = your_frequency_data, # length_cols = c("8", "9", "10", "11", "12"), # a = 0.0012, # b = 3.1242 # ) ## ----------------------------------------------------------------------------- # # Plot juvenile analysis # juvenile_plot <- plot_juvenile_analysis( # data = your_data, # x_var = "date", # length_cols = c("8", "9", "10", "11", "12"), # plot_type = "bars", # title = "Juvenile Analysis Over Time" # ) # # # Create comprehensive dashboard # dashboard <- create_fishery_dashboard( # data = complete_data, # date_col = "date", # length_cols = find_columns_by_pattern(complete_data, "^[0-9]") # ) ## ----------------------------------------------------------------------------- # # Use parallel processing for catch weighting # weighted_data <- apply_catch_weighting( # data = large_dataset, # length_cols = length_columns, # catch_col = "catch", # a = 0.0048, # b = 3.067, # parallel = TRUE, # num_cores = 4 # )