Changes in v1.5.0
- Add 
textmodel_lss.tokens() to use
wordvector::textmodel_word2vec() as the underlying
engine. 
- Rename 
w to k in
textmodel_lss.fcm() to make it consistent with other
methods. 
Changes in v1.4.5
- Enable grouping by multiple variables using
smooth_lss(). 
- Fix tests for 
textplot_*() for upcoming
ggplot2. 
Changes in v1.4.4
- Fix a bug in 
as.textmodel_lss() when a
textmodel_wordvector object is given. 
- Add 
sampling to textplot_terms() to
improve highlighting of words when the distribution of polarity scores
is asymmetric. 
Changes in v1.4.3
- Improve the handling of 
textmodel_wordvector objects
from the wordvector package in
as.textmodel_lss(). 
- Deprecate 
auto_weight in
textmodel_lss(). 
- Deprecate 
textplot_simil(). 
Changes in v1.4.2
- Add 
as.textmodel_lss() for objects from the
wordvector package. 
- Reduce dependent packages by moving rsparse,
irlba and rsvd to Suggests.
 
- Fix handling of phrasal patterns in
textplot_terms(). 
- Improve objects created by
as.textmodel_lss.textmodel_lss(). 
Changes in v1.4.1
- Add 
group to smooth_lss() to smooth LSS
scores by group. 
- Add 
optimize_lss() as an experimental function. 
Changes in v1.4.0
- Change the default value to 
max_highlighted = 1000 in
textplot_terms(). 
- Add 
... to customize text labels to
textplot_terms(). 
- Highlight words in different colors when a dictionary is passed to
highlighted. 
- Add 
mode = "predict" and remove = FALSE to
bootstrap_lss(). 
Changes in v1.3.2
- Fix the error in 
textplot_terms() when the frequency of
terms are zero (#85). 
Changes in v1.3.1
- Fix the range of scores when 
cut is used. 
- Add 
bootstrap_lss() as an experimental function. 
Changes in v1.3.0
- Add 
cut to predict. 
- Move examples to the new package website:
http://koheiw.github.io/LSX.
 
- Rename “rescaling” to “rescale” for simplicity and consistency.
 
- Improve random sampling of words to highlight in
textplot_terms() to avoid congestion. 
Changes in v1.2.0
- Add 
group_data to textmodel_lss() to
simplify the workflow. 
- Add 
max_highlighted to textplot_terms() to
automatically highlight polarity words. 
Changes in v1.1.4
- Update 
as.textmodel_lss() to avoid errors in
textplot_terms() when terms is used. 
Changes in v1.1.3
- Restore examples for 
textmodel_lss(). 
- Defunct 
char_keyness() that has been deprecated for
long. 
Changes in v1.1.2
- Update examples to pass CRAN tests.
 
Changes in v1.1.1
- Add 
min_n to predict() to make polarity
scores of short documents more stable. 
Changes in v1.1.0
- Add 
as.textmodel_lss() for textmodel_lss objects to
allow modifying existing models. 
- Allow 
terms in textmodel_lss() to be a
named numeric vector to give arbitrary weights. 
Changes in v1.0.2
- Add the 
auto_weight argument to
textmodel_lss() and as.textmodel_lss() to
improve the accuracy of scaling. 
- Remove the 
group argument from
textplot_simil() to simplify the object. 
- Make 
as.seedwords() to accept multiple indices for
upper and lower. 
Changes in v1.0.0
- Add 
max_count to textmodel_lss.fcm() that
will be passed to x_max in
rsparse::GloVe$new(). 
- Add 
max_words to textplot_terms() to avoid
overcrowding. 
- Make 
textplot_terms() to work with objects from
textmodel_lss.fcm(). 
- Add 
concatenator to as.seedwords(). 
Changes in v0.9.9
- Correct how 
textstat_context() and
char_context() computes statistics. 
- Deprecate 
char_keyness(). 
Changes in v0.9.8
- Stop using functions and arguments deprecated in quanteda
v3.0.0.
 
Changes in v0.9.7
- Make 
as.textmodel_lss.matrix() more reliable. 
- Remove quanteda.textplots from dependencies.
 
Changes in v0.9.6
- Updated to reflect changes in quanteda (creation of
quanteda.textstats).
 
Changes in v0.9.4
- Fix 
char_context() to always return more frequent words
in context. 
- Experimental 
textplot_factor() has been removed. 
as.textmodel_lss() takes a pre-trained
word-embedding. 
Changes in v0.9.3
- Add 
textstat_context() and char_context()
to replace char_keyness(). 
- Make the absolute sum of seed weight equal to 1.0 in both upper and
lower ends.
 
textplot_terms() takes glob patterns in character
vector or a dictionary object. 
char_keyness() no longer raise error when no patter is
found in tokens object. 
- Add 
engine to smooth_lss() to apply
locfit() to large datasets. 
Changes in v0.9.2
- Updated unit tests for the new versions of stringi and
quanteda.
 
Changes in v0.9.0
- Renamed from LSS to LSX for CRAN submission.
 
Changes in v0.8.7
- Added 
textplot_terms() to improve visualization of
model terms.