## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----echo=FALSE,eval=TRUE----------------------------------------------------- library(GCEstim) load("GCEstim_Quick_start.RData") ## ----echo=TRUE,eval=TRUE------------------------------------------------------ coef.dataGCE <- c(1, 0, 0, 3, 6, 9) ## ----echo=FALSE,eval=TRUE----------------------------------------------------- summary(dataGCE) ## ----echo=FALSE,eval=TRUE, fig.width=6,fig.height=6,fig.align='center'-------- plot(dataGCE) ## ----echo=TRUE,eval=TRUE------------------------------------------------------ res.lmgce.v01 <- lmgce( formula = y ~ X001 + X002 + X003 + X004 + X005, data = dataGCE) ## ----echo=TRUE,eval=TRUE------------------------------------------------------ res.lmgce.v01 ## ----echo=TRUE,eval=TRUE------------------------------------------------------ summary(res.lmgce.v01) ## ----echo=TRUE,eval=TRUE------------------------------------------------------ (coef.res.lmgce.v01 <- coef(res.lmgce.v01)) ## ----echo=TRUE,eval=TRUE------------------------------------------------------ res.lmgce.v01$error.measure ## ----echo=TRUE,eval=TRUE------------------------------------------------------ res.lmgce.v01$error.measure.cv.mean ## ----echo=TRUE,eval=TRUE------------------------------------------------------ confint(res.lmgce.v01, level = 0.95) ## ----echo=TRUE,eval=TRUE, fig.width=6,fig.height=4---------------------------- plot(res.lmgce.v01, which = 1)[[1]] ## ----echo=TRUE,eval=FALSE----------------------------------------------------- # res.lmgce.v01.confint <- # confint( # res.lmgce.v01, # level = 0.95, # method = "percentile", # boot.B = 1000, # boot.method = "residuals" # ) ## ----echo=TRUE,eval=TRUE------------------------------------------------------ res.lmgce.v01.confint ## ----echo=TRUE,eval=TRUE------------------------------------------------------ res.lmgce.v02 <- update(res.lmgce.v01, boot.B = 1000, boot.method = "residuals") ## ----echo=TRUE,eval=TRUE------------------------------------------------------ res.lmgce.v02.confint <- confint( res.lmgce.v02, level = 0.95, method = "percentile" ) ## ----echo=TRUE,eval=TRUE------------------------------------------------------ res.lmgce.v02.confint ## ----echo=TRUE,eval=TRUE, fig.width=6,fig.height=4,fig.align='center'--------- plot(res.lmgce.v02, which = 1, ci.method = "percentile")[[1]] ## ----echo=TRUE,eval=TRUE, fig.width=6,fig.height=4---------------------------- res.lmgce.v01$support.stdUL #standardized ## ----echo=TRUE,eval=TRUE, fig.width=6,fig.height=4---------------------------- res.lmgce.v01$support.signal.1se ## ----echo=TRUE,eval=TRUE, fig.width=6,fig.height=4---------------------------- res.lmgce.v01$support.matrix #original scale ## ----echo=TRUE,eval=TRUE, fig.width=6,fig.height=4,fig.align='center'--------- plot(res.lmgce.v01, which = 2)[[1]] ## ----echo=TRUE,eval=TRUE, fig.width=6,fig.height=4,fig.align='center'--------- plot(res.lmgce.v01, which = 3)[[1]] ## ----echo=TRUE,eval=TRUE, fig.width=6,fig.height=4---------------------------- res.lmgce.v01$p0 ## ----echo=TRUE,eval=TRUE, fig.width=6,fig.height=4,fig.align='center'--------- plot(res.lmgce.v01, which = 6)[[1]] ## ----echo=TRUE,eval=TRUE, fig.width=6,fig.height=4---------------------------- res.lmgce.v01$p ## ----echo=TRUE,eval=FALSE----------------------------------------------------- # lmgce(y ~ X001 + X002 + X003 + X004 + X005, # data = dataGCE, # errormeasure.which = "min") # #or # update(res.lmgce.v01, errormeasure.which = "min) ## ----echo=TRUE,eval=TRUE, fig.width=6,fig.height=4---------------------------- res.lmgce.v01.min <- changesupport(res.lmgce.v01, "min") ## ----echo=TRUE,eval=TRUE, fig.width=6,fig.height=4---------------------------- summary(res.lmgce.v01.min) ## ----echo=TRUE,eval=TRUE, fig.width=6,fig.height=4---------------------------- plot(res.lmgce.v01.min) ## ----echo=TRUE,eval=TRUE, fig.width=6,fig.height=4---------------------------- data.frame("Supp_1se" = coef(res.lmgce.v01), "Supp_min" = coef(res.lmgce.v01.min), "OLS" = coef(res.lmgce.v01$results$OLS$res), "TRUE" = coef.dataGCE) ## ----echo=TRUE,eval=TRUE, fig.width=6,fig.height=4---------------------------- fitted(res.lmgce.v01)[1:5] ## ----echo=TRUE,eval=TRUE, fig.width=6,fig.height=4---------------------------- predict(res.lmgce.v01, dataGCE[1,]) ## ----echo=TRUE,eval=FALSE----------------------------------------------------- # lmgceAddin() ## ----echo=TRUE,eval=FALSE----------------------------------------------------- # res.cv.lmgce <- # cv.lmgce( # y ~ X001 + X002 + X003 + X004 + X005, # data = dataGCE, # support.signal.points = c(3, 5, 7, 9, 11), # support.noise.points = c(3, 5, 7, 9, 11), # weight = c(0.1, 0.3, 0.5, 0.7, 0.9)) ## ----echo=TRUE,eval=TRUE------------------------------------------------------ res.cv.lmgce ## ----echo=TRUE,eval=TRUE------------------------------------------------------ res.cv.lmgce$results[order(res.cv.lmgce$results$error.measure.cv.mean),][1:10,-6] ## ----echo=TRUE,eval=TRUE------------------------------------------------------ summary(res.cv.lmgce$best) ## ----echo=TRUE,eval=TRUE,fig.width=6,fig.height=12,fig.align='center'--------- plot(res.cv.lmgce) ## ----echo=TRUE,eval=TRUE,fig.width=6,fig.height=6,fig.align='center'---------- plot(moz_ts) ## ----echo=TRUE,eval=TRUE------------------------------------------------------ res.tsbootgce <- tsbootgce( formula = CO2 ~ 1 + L(GDP, 1) + L(EPC, 1) + L(EU, 1), data = moz_ts ) ## ----echo=TRUE,eval=TRUE,fig.width=6,fig.height=4,fig.align='center'---------- plot(res.tsbootgce)[[1]] ## ----echo=TRUE,eval=TRUE,fig.width=8,fig.height=5,fig.align='center'---------- res.tsbootgce ## ----echo=TRUE,eval=TRUE,fig.width=8,fig.height=5,fig.align='center'---------- coef(res.tsbootgce) ## ----echo=TRUE,eval=TRUE,fig.width=8,fig.height=5,fig.align='center'---------- confint(res.tsbootgce) ## ----echo=TRUE,eval=TRUE,fig.width=8,fig.height=5,fig.align='center'---------- plot(res.tsbootgce, ci.levels = c(0.90, 0.95, 0.99), ci.method = c("hdr" #,"basic" #,"percentile" ))[[2]] ## ----echo=TRUE,eval=TRUE------------------------------------------------------ res.neagging.lmgce <- neagging(res.lmgce.v02) ## ----echo=TRUE,eval=TRUE,fig.width=6,fig.height=4,fig.align='center'---------- plot(res.neagging.lmgce) ## ----echo=TRUE,eval=TRUE------------------------------------------------------ which.min(res.neagging.lmgce$error)[[1]] ## ----echo=TRUE,eval=TRUE,fig.width=6,fig.height=4,fig.align='center'---------- plot(res.neagging.lmgce, which = 2) ## ----echo=TRUE,eval=TRUE------------------------------------------------------ coef(res.neagging.lmgce) ## ----echo=TRUE,eval=TRUE------------------------------------------------------ coef(res.neagging.lmgce, which = ncol(res.neagging.lmgce$matrix)) ## ----echo=TRUE,eval=TRUE------------------------------------------------------ accmeasure( as.matrix(cbind(1,dataGCE.test[, - ncol(dataGCE.test)])) %*% as.matrix(coef(res.neagging.lmgce)), dataGCE.test$y) accmeasure( predict(res.lmgce.v02, dataGCE.test), dataGCE.test$y) ## ----echo=TRUE,eval=TRUE------------------------------------------------------ res.neagging.tsbootgce <- neagging(res.tsbootgce) ## ----echo=TRUE,eval=TRUE,fig.width=6,fig.height=4,fig.align='center'---------- plot(res.neagging.tsbootgce)