--- title: CA Step 4 Corpus Analytics subtitle: corpus_analytics() author: Jamie Reilly, Ben Sacks, Ginny Ulichney, Gus Cooney, Chelsea Helion date: "`r format(Sys.Date(), '%B %d, %Y')`" show_toc: true slug: ConversationAlign Analytics output: rmarkdown::html_vignette: toc: yes vignette: > %\VignetteEngine{knitr::rmarkdown} %\VignetteIndexEntry{CA Step 4 Corpus Analytics} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ```{r, message=FALSE, warning=F, echo=F} # Load SemanticDistance library(ConversationAlign) ``` # Generate corpus analytics ## `corpus_analytics()` This is a helpful addition to `ConversationAlign` that will generate a variety of corpus analytics (e.g., word count, type-token-ratio) for your conversation corpus. The output is in a summary table that is readily exportable to to the specific journal format of your choice using any number of packages such as `flextable` or `tinytable`.
Generate your corpus analytics on the dataframe you created with `prep_dyads`. Arguments to `corpus_analytics` include:
1) **dat_prep**= dataframe created by ``prep_dyads()``function
```{r, eval=T, warning=F, message=F} NurseryRhymes_Analytics <- corpus_analytics(dat_prep=NurseryRhymes_Prepped) knitr::kable(head(NurseryRhymes_Analytics, 15), format = "simple", digits = 2) ``` `