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Abstract

BKTR is a new software library for spatiotemporal regression analysis with varying
coefficients that allows for efficient and easy-to-use inference over datasets that vary in
time and space. The library is implemented in R and Python, providing a flexible and
easy-to-use framework for spatiotemporal regression models. One of the main challenges in
spatiotemporal modelling when using local regression is the computational cost. BKTR
addresses this computational challenge by implementing a tensor regression approach,
which greatly reduces the model’s computational cost. The calculation speed is further
improved using the specialized tensor library torch (in both R and Python), which enables
optimal matrix and tensor computation on GPUs and TPUs. The framework also assumes
Gaussian process (GP) priors to capture the spatial and temporal dependencies of the data
in a Bayesian context. Hence, the full name of the framework, Bayesian Kernelized Tensor
Regression, refers to the combined usage of tensor regression and GP models. The Python
pyBKTR package is available on PyPI and the R BKTR package is available on CRAN.

Keywords: Gaussian process, Tensor regression, Local spatiotemporal regression, R, Python.

1. Introduction

With the rise of the Internet of Things (IoT) and the considerable increase in mobile device
and sensor use, the amount of available data varying through time and space has been growing
rapidly. Thus, statistical analyses such as spatiotemporal regressions that take into account
the spatial and temporal aspects of data have become increasingly valuable. Spatiotemporal
regressions are especially useful for analyzing and predicting complex phenomena like weather
patterns, agricultural output, transportation, epidemiology outbreaks and much more. It is
possible to regroup spatiotemporal regressions into two main regression categories: global
and local. The main difference between the two is their approach to modelling relationships
between variables over space and time. Global regression assumes that the relationships
between variables are constant across space and time. In contrast, local regression allows for
the relationship between variables to vary across different locations and time points. Local
regression is often viewed as a more flexible and better suited method for capturing changes
in variables’ relationships in time and space.
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Even if local regression is usually more flexible and leads to a better fit, this method is much
more computationally expensive than global regression. This is due to the fact that local
regression needs to estimate coefficients at each location and time point studied. In fact, for

a response matrix Y € RM*N observed from a set of locations S = {s1,...,sp} and a set

of time points T' = {t1,...,tn}, we can define the model over a Cartesian product S x T =

{(smytn) :m=1,...,M, n=1,..., N} and formulate local spatiotemporal regression as:
Y(Smstn) = m(smatn)TIB(Smatn) + €(8mstn), (1)

where y(s, t,) is the response variable at location s, and time ¢,,, and z(z,, t,,) and S(Sm, tn)
are the covariates and coefficients at location s,, and time t,, respectively. Local spatiotem-
poral regression has already been explored and implemented in the literature. For example,
Gelfand et al. (2003) have already suggested using a separable kernel to build a spatiotem-
porally varying coefficient model (STVC). However, even with the advent of new computing
technologies, local regression models for spatiotemporal data like STVC is still unable to run
on even medium-sized datasets, due to the sheer number of local regression’s parameters.
To the best of our knowledge, no readily available software package currently allows for the
efficient use of local spatiotemporal regression. The Bayesian Kernelized Tensor Regression
(BKTR) method proposed by Lei et al. (2023) overcomes this limitation by using a tensor
decomposition to estimate coefficients. In so doing, the time complexity of each sampling
iteration changes from O(M3N3P3) for the STVC method to O(R3*(M3 + N3 + P3)), where
R is usually an arbitrary small value denoting the rank of the tensor decomposition. The
BKTR method also uses a Gaussian process (GP) prior with a spatial and a temporal kernel
to model the spatiotemporal dependence of the coefficients.

From a software perspective, a wide range of R (R Core Team 2023) packages is currently
available on the Comprehensive R Archive Network (CRAN) for exploring the spatial charac-
teristics of datasets. Some general spatial packages including sp (Pebesma and Bivand 2005),
spatial (Venables and Ripley 2002), spacetime (Pebesma 2012) and spatstat (Baddeley and
Turner 2005) enable the analysis and visualization of spatial patterns. Additional packages
such as splm (Millo and Piras 2012), and fields (Nychka et al. 2021) facilitate spatial regres-
sions and kriging. Thegstat (Pebesma 2004) package initially focused on spatial models, but
now enables spatiotemporal modelling using covariance models (Gréler et al. 2016).

Significant advancements in spatio-temporal data modelling are linked to the integration of
regression models based on the Bayesian paradigm. Implementing Bayesian Markov chain
Monte Carlo (MCMC) inference can be accomplished through packages like R2ZWinBUGS
(Sturtz et al. 2005), rjags (Plummer 2023) and rstan (Stan Development Team 2023), which
are R wrappers for the WinBugs (Lunn et al. 2000), JAGS (Plummer 2003) and Stan (Carpen-
ter et al. 2017) general MCMC frameworks, written in low-level languages. An alternative to
MCMC for Bayesian inference, which can be more computationally efficient, is the Integrated
Nested Laplace Approximation (INLA) framework (Rue et al. 2009). This approach has been
successfully applied to different spatial datasets (Lindgren and Rue 2015) using the R-INLA
package. While these packages provide versatile Bayesian frameworks, the complexity of im-
plementing spatiotemporal models, especially with localized spatio-temporal variations, often
requires specialized expertise.

New integrated Bayesian regression software solutions such as spate (Sigrist et al. 2015), sim-
plifying spatiotemporal regression while accounting for temporal aspects of the data. However,
spate lacks the ability to incorporate local spatial regression, which restricts the inclusion of
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locally varying temporal patterns. To address this limitation, packages such as spTimer
(Bakar and Sahu 2015), spBayes (Finley et al. 2015) and spTDyn (Bakar et al. 2016) have
emerged, making it easier to implement spatio-temporal regression models with spatially vary-
ing coefficients. As demonstrated in Table 1, an unmet need for local temporal regression has
persisted, but this failing has been rectified by the introduction of the BKTR package. By ef-
ficiently incorporating spatiotemporally varying coefficients, BKTR enhances spatiotemporal
analyses and broadens the toolkit available to researchers and analysts

Regression Types
R Package Spatial | Temporal | Bayesian | Local in Space | Local in Time
splm v
fields v
gstat v v
spate v v v
spBayes v v v v
spTimer v v v v
spTDyn v v v v
BKTR v v v v v

Table 1: Summary of the spatial regression packages available in R

The packages presented in this paper, BKTR and pyBKTR, implement the BKTR method
and provide a user-friendly interface for estimating coefficients for local spatiotemporal regres-
sion. The BKTR package is implemented in R and is available on CRAN. The pyBKTR library
is implemented in Python and is available on PyPI (https://pypi.org/project/pyBKTR).
Both packages provide the same functionalities and are designed to be used in a similar fash-
ion. To mimic the object-oriented patterns of Python, we used the R6 package (Chang 2021)
in BKTR for classes and methods. Also, to be able to use a similar approach for tensor
operations, we used Torch in both R and Python packages which translate to torch (Falbel
and Luraschi 2023) and pytorch (Paszke et al. 2019), respectively. The results can be visu-
alized using the ggplot2 package (Wickham 2016) in R and plotly (Plotly Technologies Inc.
2015) in Python. Furthermore, to be able to use Wilkinson formulae (Wilkinson and Rogers
1973), as in the R formula object, we use the Formulaic (Wardrop 2022) python package.
For DataFrame usage, we use the pandas package (The Pandas Development Team 2022) in
Python and data.table (Dowle and Srinivasan 2023) in R. All examples given in this paper
are available in a GitHub repository (https://github.com/julien-hec/bktr-examples).
This paper focuses mainly on the R implementation of BKTR, but the syntaxes of the R and
Python packages we implemented are very similar. To convert covered examples from R to
Python, it should be sufficient to convert all base 1 indexes to base 0 and to change “$” to
“. 7 “<="to “=" and “$new()” to “()”. Also, the source code is available on GitHub at
https://github.com/julien-hec/BKTR/ and https://github.com/julien-hec/pyBKTR/
for BKTR and pyBKTR, respectively. Note that when we refer to the BKTR packages in
this paper (plural form), we are referring to both the R and Python implementations at the
same time.

The rest of this paper is organized as follows. Section 2 presents the BKTR algorithm. Section
3 presents the BKTRRegressor class and its attributes. Section 4 presents the different kernels
available in the package. Section 5 presents a simulation study to validate our implementation
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of the BKTR regression. Section 6 presents an experimental study on bike sharing data.
Finally, Section 7 concludes the paper.

2. BKTR algorithm

The objective of Bayesian Kernelized Tensor Regression (BKTR) is to model a response vari-
able Y as a function of spatiotemporal covariates X', with the model’s coefficients allowed
to vary in time and space. In addition to the spatial and temporal framework, BKTR also
considers the case where a proportion of the response matrix Y can be unobserved or cor-
rupted, given observed values of the covariates X. The covariates X represent a tensor of
size M x N x P where M is the number of locations, N is the number of time points and P
is the number of covariates at each location and time point we want to model. The response
variable Y, for its part, is a matrix of size M x N. One application of this could be to model
the yearly hospital beds number per 10,000 people of M districts through N months, using
P socioeconomic covariates that change through time and space.

This section is based considerably on the work of Lei et al. (2023) and aims to summarize the
BKTR model they have described. In Section 2.3, we discuss a previously unexplored aspect
of BKTR regarding interpolation.

2.1. Model definition

It is possible to reshape the above-mentioned covariates tensor X and the response variable
Y to obtain a vectorized version of Equation 1:

y=Iyn O X(g))TVeC(B(g)) + €, (2)

where vy is the vectorized version in RM¥Y of Y', and X (3) and B3y are the mode-3 unfolding of
X and B, respectively. The ® operator is the Khatri-Rao product (Khatri and Rao 1968) and
the product I'n/v © X (3) is a sparse expansion of the covariates. The error term € is assumed
to follow a multivariate normal distribution such that € ~ N(0,7 'Ty;n), where Iy/n is an
identity matrix of size M N x MN. Assuming that B admits a CANDECOMP/PARAFAC
(CP) (Kolda and Bader 2009) decomposition with rank R < min{M, N}, ie., B=2 wu,o
v, o w,, the model can be rewritten as

y=Xvec(W(VoU)")+e, (3)

where X = (Iyn © X(?,))—r and U, V and W are matrices of size M x R, N x R and P X R,
respectively, containing the concatenated vectors u,, v, and w, of the CP decomposition of
B.

To account for missing values in response variable Y, we can rewrite the model of Equation 3
as:

yo ~ N (0 (Xvee(W(VoU))), 7 ). (4)
where yq is the vectorized version of Y restricted to the observed entries 2, O is the op-
erator selecting the observed entries of a vector and |{2| is the number of observed entries,
so that given O, yq = Oy. To account for the spatial and temporal correlation during CP
decomposition, we use GP priors on the spatial and temporal component vectors:

u, ~GP(0,K,), r=1,...,R,

5
v, ~GP0,K;), r=1,...,R, 5)
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Figure 1: Illustration of the BKTR framework (Source: Figure 1 from Lei et al. (2023))

where K ; and K; are covariance matrices of size M x M and N x N, respectively, derived from
two kernel functions ks(Sm, Simr; @) and ki (ty, tn;T), where @ is a vector of J spatial kernel
hyperparameters ® = {¢1,...,¢s} and I' is a vector of L temporal kernel hyperparameters
I'={91,...,7.}. The priors of kernel hyperparameters are

log (¢i) ~ N (g, 75, ), i =1,...,J,
log (i) ~ Nty 75,1), i =1,..., L.

It can be noted that, for BKTR, K, and K; are in fact correlation matrices, as we set the
kernel variance to 1 and capture the variance through W.

(6)

For the components of factor matrix W, we use the following priors:
w, ~GP(0,A'), r=1,...,R,
Ay ~ WP, 1),
where Wq is a P x P scale matrix and vq is the number of degrees of freedom.

The prior on the noise precision 7 in Equation 4 is 7 ~ Gamma(ag, by).

An illustration of the BKTR framework taken from (Lei et al. 2023) is shown in Figure 1 to
help visualize the dependencies between variables and the different steps of the algorithm.

2.2. Sampling
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This section provides only a brief overview of the sampling algorithm and its main steps, which
are described in Algorithm 1. More details about the conditional posterior distributions from
which BKTR parameters are sampled can be found in Lei et al. (2023).

The BKTR MCMC algorithm uses Gibbs sampling (Geman and Geman 1984) for the pa-
rameters U, V, W, 7 and the precision matrix A,,. For the hyperparameters ® and I', a
slice sampling algorithm (Neal 2003) is used, as the conditional posterior distribution of these
parameters is not easy to sample from.

The sampling process uses K burn-in iterations and K5 iterations to sample the posterior
distribution of the parameters. The number of iterations Ky and K are arbitrary, chosen by
the user and ideally large enough to ensure the Markov chains reach a stationary state before
sampling begins.

Algorithm 1 Simplified BKTR MCMC sampling process
Input: yo, X, R, K1, Ko, ks, k, ®,1', 7, 7y, a0, bo, T

1: Intialize {U,V, W} as normally distributed random values
2: Set pg, = log (¢;) Yo € @, py, =log (i) Vy; €T
3: Sample A, ~ W(Ip, P)
4: for k=1: K; + K5 do
5: Sample kernel hyperparameters @, I
> from slice sampling given V., W, yq, X, ®,74,,...,74,, 1,7, ..., 7y,
6: Sample hyperparameters A, > from Wishart distribution given W
7 Sample factor vec(U) > from Normal distribution given W,V , yq, X, T, ks
8: Sample factor vec(V) > from Normal distribution given W, U, yq, X, T, kt
9: Sample factor vec(W') > from Normal distribution given U,V ,yq, X, T, A,
10: Sample precision 7 > from Gamma distribution given U,V , W, yq, X, ag, by
11: if £ > K7 then
12: Collect the samples UF—K) = U, v k=K — Vv, w k=K1 — W,
13: Compute and collect B—K) given B = Zle U, O Uy O Wy
14: end if
15: end for

16: return {B(k)}fil to approximate posterior coefficients and estimate unobserved data.

The posterior samples {l’j’(k)}kK:"’1 are used to approximate the posterior distribution of the
coeflicients B. The posterior samples can then be used directly to impute unobserved response
variables with given covariate values and to analyze the spatial and temporal patterns of the
coefficients.

2.3. Interpolation

An important addition to the BKTR algorithm is the capacity to do interpolation. By in-
terpolation, we mean the ability to estimate new regression coefficients B"“" and response
values Y"" at unobserved time points and locations. In the literature, this process is often
named Bayesian kriging. As a process, interpolation differs from imputation, which was al-
ready covered in BKTR. Imputation is used when parts of the response variables are missing
at some of the M°" locations or N° time points employed during regression. In contrast,
interpolation is accomplished in a completely different step after MCMC sampling, and it is



Julien Lanthier, Mengying Lei, Lijun Sun, Aurélie Labbe

V4 V4

bs bs 2 . 5
Me Yo Y ]\4obs (tvobb X2 ]V[Obs Bobb B2
Mrew Yr1 YS M ew X 1 M new Bl 3
NObS N new NObS N new Nobs N new

Figure 2: Illustration of the data components Y, X and B for interpolation at M"¥ unob-
served locations and N™" unobserved time steps.

performed at M"™"V new locations and N"V time points. To perform interpolation, we need
to estimate, for M™Y unobserved locations and N™W unobserved time steps, the posterior
distributions of the related coefficients B"“". The formal representation of the B"®" coeffi-
cients can be somewhat difficult to visualize, as it cannot be stored in a simple tensor format.
Thus, we use a representation similar to the one presented by Takeuchi et al. (2017) and
we illustrate it in Figure 2. Using this representation, the prediction results of B"Y can be
represented by three tensors: B!, the coefficients for new locations at observed time points,
B2, the coefficients for new time points at observed locations and B>, the beta coefficients
for new locations at new time points. We also include in Figure 2, the equivalent illustration
for the newly provided covariates X"V composed of X, X2, &3, on top of the related new
response variable matrices Y™V composed of Y', Y2 and Y.

We estimate the distributions of B"Y via MCMC sampling with an approach similar to the
one presented by Gamerman et al. (2008). The posterior coefficients B"" are estimated
by doing interpolation on the spatial decomposition U and the temporal decomposition V'
separately. We can formulate the joint multivariate normal distribution for the r" compo-
nent of the spatial decomposition which includes the observed (uSP®) and the new (ul®%)
decomposition vectors as follows:

udbs (@ | (O R%bsb RO ®)
'U,;.lew OMnew ’ R;ew’o S R%ew ’
where R$™ is the covariance matrix corresponding to the observed locations and RY is the
covariance matrix corresponding to the unobserved locations for a known set of spatial kernel

hyperparameters ®. The covariance matrix between the observed and unobserved locations
. b bs . . . .
is RZ) SUY and Rgew’o ® is its transpose. Finally, 0); represents a vector of zeros of size M.

The same approach can be used to formulate the joint multivariate normal distribution for
the temporal decomposition V' using the temporal kernel hyperparameters I'.

From Equation 8 (and its equivalent for temporal decomposition), we can find the conditional
distribution of the decompositions at new locations and time points

new |, ,obs new,obs pobs~!  obs new new,obs pobs ! pobs,new _
uVur™ ~ N(Ry RY” w)”, Ry — Ry Ry® Ry, ), r=1,...,R,

T i

new |,.obs new,obs pobs ™! obs new new,obs pobs ™! pobs,new _
v, |'U7,. NN(RF RF v, RF _RF RF RF ), r = 1,...,R.

9)
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We can obtain the parameters in Equation 9 using posterior samples captured during the
Ky sampling iterations of the MCMC sampling described in Algorithm 1. To estimate the
distribution of u,}*V and v}V, we can use the accumulated estimated values of all spatial
and temporal kernel hyperparameters ® and I'" to evaluate, at each sampling iteration, the
covariance matrices R%bs, Ry, R%bs’new, Rf«bs, R;°Y and Rl(ibs’new. From the posterior
distributions, we are able to obtain a spatial decomposition sample at new locations u,°¥ and a
temporal decomposition sample at new time points v;**" for each of the Ky sampling iterations.
From the u}®%, v'®" samples and their corresponding w, at each sampling iteration, we are
able to approximate samples of B"®". Lastly, by combining the Ky sampled B"®Y values, we
can obtain an estimate of its distribution. After this sampling process, it is fairly simple,
following Equation 2, to get the expectation of the response variable E(Y™"°V|Y°™) using

B"¥ and the corresponding covariates X"V,

An important aspect of using kriging for predictions is that it is mainly effective when new
locations and time points are close to observed records. Thus, BKTR predictions made in
relatively close spatial and temporal neighborhoods should be very effective. However, in
tasks such as predicting temporal values located very far in the future, the current predic-
tion methodology might yield poor results as kriging relies on nearby observations to make
predictions.

This interpolation sampling process is implemented in both BKTR packages. The perfor-
mance and results of this implementation are reviewed extensively on simulated data in Sec-
tion 5.3 and on real-world data in Section 6.3.

3. BKTR regressor class

The BKTR packages provide a BKTRRegressor class that encapsulates the core concepts and
functionalities of the BKTR algorithm. This class provides a simple interface to fit the BKTR
model for a given dataset and makes it possible to visualize fitted coefficients as well as to
predict values for new or missing observations. Even though the BKTRRegressor class has
been designed to be user-friendly, its flexibility and number of parameters need to be carefully
considered. Thus, this section is dedicated to explaining the different data inputs, parameter
inputs and all the attributes and methods of the BKTRRegressor class.

3.1. Input data

For the BK'TR algorithm, three data frame inputs need to be provided during the initialization
of a BKTRRegressor object.

e A data frame spatial_positions_df with M rows and 1 + ds columns containing
information about the spatial locations. The first column is used to label each spatial
location and the other ds columns encapsulate the spatial position of each location in dj
dimensions. For example, when we consider a location to be represented by longitude
and latitude, we would have ds = 2 and a three-column dataframe. For consistency, the
first column containing location labels should contain only unique values and needs to
be named location.

e A data frame temporal_positions_df with N rows and 1 + d; columns containing
information about each discrete timestamp. The first column labels each time point
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and the subsequent d; columns are used to capture the timestamp’s temporal position.
Typically, as when using dates as time points, dy = 1 can be used, resulting in a
two-columns dataframe. For consistency, the first column containing time point labels
should contain only unique value and needs to be named time.

A principal data frame data_df with M N rows and 3+ P columns, containing a location
label column, a time point label column, a column containing the response variable
and P columns for the covariates. The first column of the data frame needs to be
named location; it must contain the same values as the spatial_positions_df’s
location column and each value must appear N times. Similarly, the second column
of the data frame needs to be named time; it must contain the same values as the
temporal_positions_df’s time column and each value must appear M times. In other
words, the data_df data frame’s location and time columns must contain all possible
combinations of spatial_positions_df locations and temporal_positions_df time
points. In general, it is preferable but not mandatory that the third column of the data
frame contains the response variable data.

It is important to note that data_df can also contain missing values in the response variable
y column. Those missing values must be properly encoded as NaN and represent, in fact, a
flattened version of the matrix €2 in Equation 4.

To give us a better idea of what would be a valid shape for BKTRRegressor input data, let’s
take a look at the BIXI data presented in Section 6. To keep the visualization succinct, we
will take a subset of two locations (M = 2), three time points (N = 3) and two covariates
(P = 2). We can start by looking at a valid spatial_positions_df:

R>
R>
R>
R>
R>

library (BKTR)

bixi data <- BixiData$new()

ex_locs <- c('7114 - Smith / Peel', '6435 - Victoria Hall')
ex_times <- c('2019-04-17"', '2019-04-18', '2019-04-19')
print (bixi_data$spatial_positions_df[location /inj}, ex_locs])

location latitude longitude

1: 6435 - Victoria Hall 45.48129 -73.60033

2:

7114 - Smith / Peel 45.49284 -73.55642

Then look at a valid temporal_positions_df:

R> print(bixi_data$temporal_positions_df[time 7inj, ex_times])

1:

time time_index

2019-04-17 2

2: 2019-04-18 3

And lastly, look at the corresponding valid data_df:

R> print(bixi_data$data_df [

R>
R>

location }inj, ex_locs & time }inj, ex_times,
c(1:4, 17)

R> 1)
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location time nb_departure area_park humidity
1: 6435 - Victoria Hall 2019-04-17  0.24752475 0.2254071 0.1919343
2: 6435 - Victoria Hall 2019-04-18 0.16831683 0.2254071 0.4697535
3: 6435 - Victoria Hall 2019-04-19  0.07920792 0.2254071 0.9350261
4: 7114 - Smith / Peel 2019-04-17 NA 0.0652808 0.1919343
5: 7114 - Smith / Peel 2019-04-18 NA 0.0652808 0.4697535
6: 7114 - Smith / Peel 2019-04-19 NA 0.0652808 0.9350261

Another important data-related input for the BKTRRegressor is the formula. By default, if
no formula is provided, the third column of data_df will be used as the response variable y
and the remaining columns will be used as covariates x1,...,xp. If a formula is provided,
the model y and X will be extracted from the data_df and the formula. The formula
must be in the form of y ~ x1 + x2 + . .. + xP and corresponds to a valid R formula
(Wilkinson and Rogers 1973). All the terms in the formula must correspond to valid column
names of the data_df data frame. For R users, the formula must be a formula object. For
Python users, the formula must be a string that can be parsed by the Formulaic library. In
both cases, it is important to note that by default, an intercept term is automatically added
to the model matrix X and can be removed by adding a -1 term to the formula.

The covariates 1, . .., xp can describe the spatial and temporal attributes of the observations.
By nature, the BKTR packages are designed to be able to consider spatial attributes that vary
through time (e.g. population density that varies over time) or temporal attributes that vary
through space (e.g., temperature that varies through different countries). However, it is quite
common to have spatial attributes that are constant through time and temporal attributes
that are constant through space like in the BIXI example of Section 6. When this is the case
and the data is provided in a compressed manner, we provide a reshape_covariate_dfs
utility function (see Appendix B) that can help users to obtain a valid data_df.

3.2. Input parameters

In addition to data frames, the user must provide sampling parameters in order to initialize
a regressor. These parameters include burn_in_iter and sampling_iter, which are integer
inputs representing the number of iterations for the burn-in phase (K;) and the sampling
phase (K3), respectively. There is also rank_decomp, which is an integer input representing
the rank of the CP decomposition (R). The default values are 500 iterations for K; and K,
and 10 for the rank decomposition. Two different Kernel objects can also be provided (these
are further described in Section 4.2), one for the spatial kernel spatial_kernel and one for
the temporal kernel temporal_kernel. The user can also provide values for hyperparameters
such as sigma_r, which is a float representing the variance of the white noise process (771),
and a_0 and b_0, representing the initial values for the shape («) and rate (8) of the gamma
function generating 7. To ensure weak priors for a_0, b_0 and sigma_r, we provide default
values of a_0=1E-6, b_0=1E-6, sigma_r=1E-2 respectively. The spatial kernel used by default
is a Matérn kernel 5/2 with a smoothness factor v = 5 (see Table 4), while the default temporal
kernel is a Squared Exponential (SE) kernel. The BKTRRegressor class can also take a boolean
value input for the has_geo_coords parameter. This parameter, which has a default truthful
value, indicates whether we need to apply a Mercator projection (Snyder 1987) to the spatial
locations. We usually need to apply a projection when the spatial positions are encoded in
longitude and latitude so that we keep the kernel valid. The geo_coords_scale parameter
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is directly associated to the Mercator projection and dictates the scale at which it should be
projected. More information about the projection is available in Appendix E.

When using all the default parameters mentioned above, it is very simple to run a BKTR
regression on a given dataset. Here is a very simple example of the usage of the BKTRRegressor
on a light version of the BIXI data mentioned in Section 3.1 (using only 25 spatial and 50
temporal points):

R> TSR$set_params(seed = 1) # Set the seed

R> bixi_light <- BixiData$new(is_light = TRUE)

R> bktr_regressor <- BKTRRegressor$new(

+ data_df=bixi_light$data_df,

+ spatial_positions_df=bixi_light$spatial_positions_df,

+ temporal_positions_df=bixi_light$temporal_positions_df)

Once the regressor is initialized, the user can launch the MCMC sampling process by calling
the mcmc_sampling method, which stores its results inside the BKTRRegressor object. De-
pending on the number of iterations and the size of the data, this process can take a long time
to complete. Thus, we added a progress log showing the current MCMC iteration number,
the elapsed time and the current error values. The displayed in-sample errors are the mean
absolute error (MAE) and the root mean square error (RMSE) of the response variable. The
following code chunk shows the usage of the memc_sampling method, but with a truncated
output for the sake of brevity.

R> bktr_regressor$mcmc_sampling()

[1] "Iter 1 | Elapsed Time: 0.43s | MAE: 0.0921 | RMSE: 0.1202"

[1] "Iter 1000 | Elapsed Time: 0.21s | MAE: 0.0501 | RMSE: 0.0641"
[1] "Iter TOTAL | Elapsed Time: 245.34s | MAE: 0.0380 | RMSE: 0.0503"

3.3. Attributes and visualizations

Once a BKTRRegressor object has been initialized, the user can access its attributes and
methods shown in Table 2. Note that except for the mcmc_sampling method, all the other
methods and attributes are available only after the MCMC sampling process is completed.
When called on a BKTRRegressor object, the built-in summary and print R functions will
simply display the summary attribute.

The predict method is used to estimate the response variable Y and the B coefficients
for new locations and/or time points, which we referred to as interpolation in Section 2.3.
The method takes as input a data frame containing the covariates for the new locations
and/or time points new_data_df, a data frame containing the spatial positions of the new
locations new_spatial_positions_df and lastly a data frame containing the temporal po-
sitions of the new time points new_temporal_positions_df. It is possible to provide either
a new_spatial_positions_df or a new_temporal_positions_df or both. In R, it can also

11



12 BKTR in R and Python

BKTRRegressor Methods

mcmc_sampling Launches the MCMC sampling process for a predefined
number of iterations and a given set of parameters

predict Used to estimate the response variable y and the B
coefficients for new locations or time points

get_beta_summary_df Gets a summary of estimated beta values (mean, stdev,

quantiles). Labels can be provided for spatial locations,
time points and features. When no labels are given for
a dimension, all its betas are shown.

BKTRRegressor Attributes
summary Summary of the MCMC regressor object
beta_covariates_summary_df Data frame summarizing beta covariates per feature
(mean, stdev, quantiles)

y_estimates Data frame for the estimated target variable

imputed_y_estimates Data frame of the estimated and imputed target vari-
able including missing data (2)

beta_estimates Data frame estimated values for betas

hyperparameters_per_iter_df | Data frame of estimated MCMC hyperparameters (ker-
nels’ and 7) values per iteration

Table 2: BKTRRegressor attributes and methods

be called via the predict built-in function using the BKTRRegressor object as first argument
followed by all the other arguments in the same order as described above. Extensive usage
examples of the predict method are provided in Section 5.3 and Section 6.3.

The get_beta_summary_df method is used to get a summary of the estimated B coefficients.
It can take as inputs a list of labels for the spatial locations, a list of time point labels and
a list of feature labels. When no labels are given for one of the input, all the B coefficients
for the corresponding dimension are shown. The method returns a data frame containing
the mean, standard deviation, quantiles for each of the queried B coefficient for the sampled
posterior distribution. A usage example of the get_beta_summary_df method is provided in
Section 6.1.

Multiple visualization functions are also available in the BKTR packages. Those visualization
functions are shown in Table 3. All functions take a BKTRRegressor object as a first input
for which the sampling process must be completed. We can also specify, via the show_figure
boolean parameter, to either return a plot object (ggplot2 in R and plotly in Python) or to
just display the plot. The plot object can then be used to customize the plot further if needed
or to save it as an image. Also, all visualization functions can use the width or the height
parameters to customize the size of the plotting area.

Most of the attributes, methods and visualization functions described in this section are
further explored and tested in the Section 5 and Section 6.

4. BKTR Kernels

Kernels play a crucial role in Gaussian processes. They are used to model the similarity or
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BKTRRegressor Plot Functions

plot_temporal_betas Plot beta values through time for a given spatial point
and a set of feature labels.
plot_spatial_betas Plot beta values through space for a given time point

and a set of feature labels.
plot_covariates_beta_dists | Plot the distribution of beta estimates grouped by fea-
tures. A subset of features can be provided to plot only
a subset of them.

plot_hyperparams_dists Plot the distribution of 7 and kernels’ hyperparameters
for all sampling iterations. hyperparameters allows to
plot only a subset of parameters.
plot_hyperparams_per_iter | Plot the values of 7 and kernels’ hyperparameters
through sampling iterations (trace plot). The argu-
ment hyperparameters allows to plot only a subset of
parameters.

plot_y_estimates Plot the estimated values for the response variable gq
alongside their corresponding observed values yq,.

Table 3: Plot functions that can be used on a BKTRRegressor object after MCMC sampling

dissimilarity between observations. This similarity can then serve to generate a covariance
matrix that can be used as a prior distribution for given parameters. The choice of a kernel is
very important as it influences properties of the Gaussian process and makes hypotheses about
the underlying structure of the function being modelled. For example, a squared exponential
kernel (SE) is highly smooth, often referred to as the Gaussian Kernel. Consequently, it
assigns a high covariance to input points that are defined as close and low covariance to
points that are distant. In contrast, a periodic kernel assigns high covariance to points that
are separated by a multiple of a given period, resulting in a GP that can capture periodic
patterns in the data (Duvenaud 2014). Thus, the pattern difference between the SE and
periodic kernel highlights the importance of choosing a sensible kernel when modelling a
function with a GP.

The spatial_kernel and temporal_kernel objects can come from any kernel class imple-
mented in the kernels module of BKTR (see Section 4.2). We can say that BKTR kernel
classes themselves need two main components to be defined: the kernel parameters (see Sec-
tion 4.1) and the kernel function (explained in Section 4.2). The kernels implemented in
BKTR take inspiration from the kernels existing in the GPyTorch package (Gardner et al.
2018) and the Scikit-learn package (Pedregosa et al. 2011).

4.1. Kernel Parameters

All kernels implemented in BKTR have a set of KernelParameter parameters that can be
optimized during the training process of the MCMC sampling. This set of parameters can
be accessed via the parameters attribute of a kernel after its initialization. Kernels in gen-
eral contain sensible default parameters. However, the user can change the behaviour of a
given Kernel’s parameter by providing a KernelParameter object to the related parameter
argument.

13
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The KernelParameter class can take multiple arguments at initialization:

e value: an initial value used for the parameter during slice sampling or the constant
value used for the parameter when it is not optimized

e is_fixed: a Boolean argument indicating whether the hyperparameter value is fixed
or optimized during sampling

e lower_bound: a value that indicates the minimum value that can be taken by the
parameter during sampling

e upper_bound: a value that indicates the maximum value that can be taken by the
parameter during sampling

e slice_sampling_scale: a value indicating the scale parameter for the slice sampling
algorithm

e hparam_precision: a value indicating the precision of the hyperparameter

The value argument is the only argument needed to initialize KernelParameter. The other
arguments have default values if not provided. The is_fixed argument is set to false by
default, which means that the parameter will necessarily be optimized during the training
process. By default, the lower_bound and upper_bound arguments are set to 1E-03 and
1E+03, respectively, which means that the parameter will be sampled in a range of [1073, 107]
during the training process. The slice_sampling scale argument is set to 2 by default,
which represents the slice sampling step size during the MCMC sampling process. Finally,
the hparam_precision argument is set to 1E-3 by default.

4.2. Kernel Classes

BKTR Kernel classes are core components encapsulating behaviours and attributes used to
compute the covariance matrix during Gaussian processes. They contain information about
observations’ positions, all the kernel’s hyperparameters and a kernel function.

For a kernel to induce a covariance matrix, it needs an initial input encoding the positions of
the observations. This position vector is set for a Kernel object using the set_positions_df
method. This method accepts a data frame with a number of rows equals to the number of
observations and number of column equals to 1 + K, where the first column is for labelling
each observation and the other columns contain the location information for the K dimensions
of each observation.

When using stationary kernels, we can initially calculate a distance between observations
d(z,2') and use it to generate the covariance matrix. To ensure the validity of covariance
matrices, in BKTR, we use the Euclidean distance function:

K

d(iyz5) = | Y (@i — k)2, (10)

k=1

where z; and z; are two given observations’ positions from the position vector & and K is the
number of dimensions of a given position.
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Kernel Class Optimizable Kernel Function
Parameters
KernelWhiteNoise k(z,2") = I,
White noise where |z| is the the number of elements in the

position vector x.

N2
KernelSE lengthscale (¢) k(xz,a';0) = exp —M
: 20
Squared exponential
N2\ ~¢
KernelRQ alpha () k(z,2';0,0) = (1 + CW)
Rational quadratic lengthscale ({) @
2 sin? (Wd(w,x’))
KernelPeriodic lengthscale ({) k(x,2';0,t) = exp(— 7 t )
Periodic period_length ()
KernelMatern lengthscale ({) k(xz,a';0,v) =
Matérn exp(—%), ifr=1
(1—}—@ exp(—%)7 ifv=3,

(1+ Y52 1 3D%) exp(—D), ifv =5
where D = d(x,2’) and v is a Matérn kernel
input called the smoothness_factor. The
smoothness_factor input can be either 1, 3
or 5, which correspond to so called Matérn

%, % and % kernels respectively.
KernelAddComposed k(x,2'; Agy Np) = ko(z,2"5 Ag) + kp(z, 25 Ay),
Composed via where k, and kj are two kernel functions and
addition A, and Ay their sets of parameters.
KernelMulComposed k(x,2'; Ag, Np) = ka(z,2"5 Ag) * kp(z, 2'; Ay),
Composed via where k, and kj are two kernel functions and
multiplication A, and Ay their sets of parameters.

Table 4: List of kernel classes implemented in the BKTR packages and their respective
parameters and equations. The d(x,z’) function is the Euclidean distance function applied
on the observations’ positions. Note that only the parameters that are objects coming from
the KernelParameter class (parameters that can be sampled) are listed in the Optimizable
Parameters column.

With this position information, we can use all the different kernel classes available in the
BKTR package, which are enumerated in Table 4. Different kernels yield completely dif-
ferent covariance matrices according to their function and parameters. For instance, the
KernelSE kernel yields a covariance matrix with a smooth decreasing function from the diag-
onal, whereas the KernelPeriodic kernel yields a covariance matrix with a periodic pattern

15
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SE Kernel Periodic Kernel Local Periodic Kernel

b
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day day day

covariance _
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Figure 3: Heatmap plots of the covariance matrix for three different kernels implemented
in the BKTR package calculated on 21 consecutive days. Presented kernels are, in order, a
KernelSE with a lengthscale of 10, a KernelPeriodic with a period_length of 7 and a local
periodic kernel (KernelMulComposed) resulting from the multiplication of two other kernels.
The local periodic kernel plot shows that it contains the periodicity of the KernelPeriodic
kernel and the decay of the KernelSE kernel.

from the diagonal. Those different covariance matrices can be visualized using the plot
method of any implemented Kernel class and the two aforementioned kernel examples are
shown in Figure 3 (first two subfigures).

As in the case of the local periodic kernel, it is sometimes useful to combine different ker-
nels to obtain a composition of different covariance matrices. This feature is implemented
in the BKTR package with the KernelAddComposed class when adding two kernels and
KernelMulComposed class when multiplying two kernels. We can look at an example of a
composed kernel in BKTR by creating a local periodic kernel when multiplying a KernelSE
kernel with a KernelPeriodic kernel. The KernelSE kernel is used to model the smooth
decreasing function from the diagonal and the KernelPeriodic kernel is used to model the
periodic function from the diagonal. In the BIXI example used by Lei et al. (2023), a local
periodic kernel was used to model the BIXI stations’ demand with a constant period of seven
days. We can easily create and visualize this local periodic kernel using the KernelComposed
class as shown in the following code snippet:

R> days_df <- data.frame(day=1:21, position=1:21)

R> se_lengthscale <- KernelParameter$new(value=10)

R> per_length <- KernelParameter$new(value=7, is_rfixed=TRUE)

R> kernel_periodic <- KernelPeriodic$new(period_length=per_length)
R> kernel_se <- KernelSE$new(lengthscale=se_lengthscale)

R> kernel_local_periodic <- kernel_periodic * kernel_se

R> kernel_local_periodic$set_positions(days_df)

R> kernel_local_periodic$kernel_gen ()

R> kernel_local_periodic$plot ()

The resulting kernel plot is illustrated as the rightmost plot of Figure 3. The lengthscale
parameter of the SE kernel was set to a value of 10 in this example, and the period_length
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of the periodic kernel was set to 7 to enhance the visualization of kernel properties.

5. Simulation-based study

To showcase the capabilities of the BKTR package, we will first generate simulated datasets
with known ground truths and then use our software library to estimate the underlying
parameters. This aims to demonstrate the package’s capabilities and to illustrate the different
insights that can be obtained from the results of BKTR. Subsequently, we will show the
imputation and interpolation abilities of the BKTR packages on the aforementioned simulated
dataset. The imputation and interpolation results will also be compared with the results of
the Python library implementation.

To simulate data, we use the simulate_spatiotemporal_data utility function implemented
in the BKTR packages to simulate a spatiotemporal dataset with four different data frames:
spatiotemporal locations, time points, covariates (including the response variable and an
intercept term) and beta coefficients. Details regarding the simulation process and the im-
plementation of the function simulate_spatiotemporal_data are given in Appendix C.

In the following, we use two different types of simulated datasets. The former, which we
will call the Smaller dataset, will hold a B tensor with 2,400 values having M = 20 spatial
locations, N = 30 time points, two spatial covariates with means p, = [0, 2] and one temporal
covariate with mean p, = [1]. The other type of simulated dataset, which we will call the
Larger one, will use a B with 90,000 values having M = 100 spatial locations, N = 150 time
points, three spatial covariates with means p, = [0,2,4] and two temporal covariates with
means pu, = [1,3]. Both datasets have a noise scale of 02 = 1, a spatial scale of S5 = 10, a
temporal scale of Sy = 10 and spatial data in d = 2 dimensions. Spatial and temporal kernel
functions used to obtain covariance matrices will vary on a case by case basis, depending on
subsections.

5.1. Estimation of the parameters

We start by simulating a Larger dataset described above using a spatial Matérn 5/2 Kernel
with a lengthscale parameter value ¢;™ = 14 and a temporal squared exponenential kernel
with a lengthscale parameter 5™ = 5.

R> TSR$set_params (seed = 1)

R> matern_lengthscale <- KernelParameter$new(value = 14)

R> se_lengthscale <- KernelParameter$new(value = 5)

R> spatial_kernel <- KernelMatern$new(lengthscale = matern_lengthscale)
R> temporal_kernel <- KernelSE$new(lengthscale = se_lengthscale)

R> # Simulate data

R> simu_data <- simulate_spatiotemporal_data/(
+ nb_locations=100,

+ nb_time_points=150,

+ nb_spatial_dimensions=2,

+ spatial_scale=10,

+ time_scale=10,

17
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spatial_covariates_means=c(0, 2, 4),
temporal_covariates_means=c(1, 3),
spatial_kernel=spatial_kernel,
temporal_kernel=temporal_kernel,
noise_variance_scale=1)

+ + + + +

Once the data is simulated, we can fit a BKTR model to it.

R> bktr_regressor <- BKTRRegressor$new(

data_df = simu_data$data_df,

spatial_kernel = KernelMatern$new(),
spatial_positions_df = simu_data$spatial_positions_df,
temporal_kernel = KernelSE$new(),

temporal_positions_df = simu_data$temporal_positions_df,
has_geo_coords=FALSE)

R> bktr_regressor$mcmc_sampling()

+ + + + + +

[1] "Iter 1 | Elapsed Time: 0.55s | MAE: 2.9356 | RMSE: 3.7555"

[1] "Iter 1000 | Elapsed Time: 0.37s | MAE: 0.8038 | RMSE: 1.0084"
[1] "Iter TOTAL | Elapsed Time: 604.75s | MAE: 0.7974 | RMSE: 1.0007"

The mcmc_sampling method prints the results for each iteration; we then truncated the
output for brevity. We can print the summary of the BKTR model to get a brief overview of
its parameters and to assess quality of the fit.

> summary(bktr_regressor)

BKTR Regressor Summary

Formula: y ~

Burn-in iterations: 500
Sampling iterations: 500
Rank decomposition: 10

Nb Spatial Locations: 100
Nb Temporal Points: 150
Nb Covariates: 6

In Sample Errors:
RMSE: 1.001
MAE: 0.797
Computation time: 604.75s.

—-- Spatial Kernel --
Matern 5/2 Kernel
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Parameter(s):

Mean Median SD Low2.5p Up97.5p
lengthscale 13.878  13.904 0.584 12.776 14.964
-- Temporal Kernel --
SE Kernel
Parameter(s):

Mean  Median SD Low2.5p Up97.5p
lengthscale 4.603 4.616 0.246 4.038 5.054

Beta Estimates Summary (Aggregated Per Covariates)

Mean Median SD
Intercept 2.415 2.626 1.695
s_cov_0 2.452 2.638 1.411
s_cov_1 -4.224 -4.171 2.770
s_cov_2 -1.938 -1.952 0.467
t_cov_0 -2.372 -2.613 1.495
t_cov_1 0.071 0.160 0.797

The model was able to recover the kernel parameters used to simulate the data. The estimated
lengthscale ¢; for the spatial kernel is 13.878 while the underlying value was ¢§™ = 14. The
estimated lengthscale 1 for the temporal kernel is 4.603, while the true value was 7§™ = 5.
The estimated noise variance is 1.0012 = 1.002 while the true value was 1. We can also
compare the estimated B coefficients with their simulated values.

R> beta_err <- unlist(abs(

+ bktr_regressor$beta_estimates[, -c(1, 2)]

+ - simu_data$beta_df[, -c(1, 2)1))

R> print(sprintf('Beta RMSE: J,.4f', sqrt(mean(beta_err~2))))
R> print(sprintf('Beta MAE: },.4f', mean(abs(beta_err))))

[1] "Beta RMSE: 0.1426"
[1] "Beta MAE: 0.0840"

It is possible to observe that the model was able to find B coefficients close to the ones used
to simulate the data, with a MAEg of 0.0840 and a RMSEg of 0.1426.

Using the plot_hyperparams_traceplot function, we can plot the estimated hyperparam-
eters values (kernels’ and 7) through iterations to see how they evolved during the MCMC
sampling. This function will plot a subset of the aforementioned hyperparameters if a vector
of hyperparameter names is provided as the hyperparameters argument. In our case, we
were interested in plotting the evolution of all kernel hyperparameters, which we can do using
the following code:
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Hyperparameter values through sampling iterations (Traceplot)
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Figure 4: Traceplot of the hyperparameters through sampling iterations for a simulated
dataset with 100 spatial locations, 150 temporal points, 6 covariates using a rank decomposi-
tion of 10, 500 burn-in iterations and 500 sampling iterations. The underlying values of the
hyperparameters that were used for simulation are traced with dashed lines.

R> fig <- plot_hyperparams_traceplot (bktr_regressor, c(
+ 'Spatial - Matern 5/2 Kernel - lengthscale',

+ 'Temporal - SE Kernel - lengthscale'

+ ), show_figure = FALSE)

R> col_1 <- '"#f87d76'; col_2 <- '#00bfc4';

R> fig +
+ scale_colour_manual (name = 'Name', values = c(col_1, col_2)) +
+ geom_hline(yintercept = matern_lengthscale$value,

+ linetype='dashed', col = col_1) +

+ geom_hline(yintercept = se_lengthscale$value,

+ linetype = 'dashed', col = col_2)

The plot resulting from the plot_hyperparams_traceplot function is shown in Figure 4.
In the figure, we observe that during the sampling iterations, the posterior distribution of
the hyperparameters was hovering around the true values used to simulate the data, which
were ¢5™ = 14 for the spatial kernel’s lengthscale and +5™ = 5 for the temporal kernel’s
lengthscale. This is a good indication of the strength of the BKTR model, which is able to
recover the underlying hyperparameters used to simulate the data. It is also worth noting
that it would have been possible to plot the posterior distribution of the hyperparameters
using the plot_hyperparams_dists function with the same parameters.

To visualize the proximity of the fitted model’s response variable values ¢ to the observed
reponse variable yq, we can use the plot_y_estimates function of BKTR.

R> plot_y_estimates(bktr_regressor, fig title = NULL)



Julien Lanthier, Mengying Lei, Lijun Sun, Aurélie Labbe 21

Estimated y
i

404

50

60 4o 20 0
Observed y

Figure 5: Scatter plot of estimated response variable vs. observed values in a simulated
dataset with 100 spatial locations, 150 time points, 6 covariates using a rank decomposition
of 10, 500 burn-in iterations and 500 sampling iterations.

When modelling the response variable effectively, the plot_y_estimates function should
show points that closely align with a diagonal reference line, representing an ideal prediction.
In Figure 5, the output of the function applied to the simulated data reveals estimated values
that closely match the true yq values.

5.2. Imputation

In this section, we will examine the effectiveness of the BKTR packages at imputation. By
imputation, we mean being able to find the best estimate for response values that were missing
from the dataset. For our testing purposes, we again simulate Larger datasets. Then, from
these datasets, we remove at random a certain percentage of response variable values and
replace them with NaN. We use three scenarios of missing value rates: 10%, 50% and 90%.

In Section 5.1 we obtained results that were extremely close to the ground truth. This can be
seen through the fact that the RMSEy stayed at around 1, which was the value of the noise
scale S.. One factor that could have helped BKTR to capture the underlying structure of
the data so well might have been that the kernels used during simulation were very smooth.
These kernels resulted in spatial and temporal covariance matrices with high values, making
the synthetic data highly correlated in space and time. Thus, to verify the effect of the
kernel parameters on the beta convergence and the imputation method, we will test the
imputation implementation on two different lengthscale value scenarios. The first scenario
will use lengthscale values of 3 for both kernels, ¢5™ = ~;™ = 3, and the second scenario
will use a value of ¢§™ = 4§™ = 6. Both of these scenarios are coupled with each missing
percentage scenario, analyzing a total of 6 different settings. For all different settings, we
simulate 10 new datasets, on which we fit K1 = 500 burn-in iterations, Ky = 500 sampling
iterations and a rank decomposition R = 10.
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Settings ' MAEg/RMSEg MAEy /RMSEy
10% R 0.66i0.12/1.06i0.21 0.87i0.02/1.10i0.03
Python | 0.844+0.42/1.394+0.80 0.88+0.02/1.10+0.03
ijm =3 50% R 0.64i0.16/1.03i0.29 O.91i0.03/1.14i0.04
=3 Python | 0.76+0.23/1.1840.40 0.924+0.03/1.16+0.03
90% R 0.634+0.08/1.914+0.17 1.10+0.06/1.42+0.08
Python | 0.60+0.12/0.87+0.22 1.124+0.07/1.4440.10
10% R 0.234+0.05/0.40+0.11  0.81+£0.02/1.02+0.02
Python | 0.174+0.03/0.2840.06 0.814+0.02/1.02+0.02
(;ﬁlm =6 50% R 0.204+0.03/0.31+0.05 0.82+0.01/1.03+0.01
™ =6 Python | 0.174+0.05/0.274+0.09  0.82+0.01/1.03+0.01
90% R 0.27+0.04/0.43+0.09  0.894+0.02/1.124+0.02
Python | 0.264+0.03/0.404+0.05 0.88+0.01/1.11+0.01

Table 5: BKTR imputation performance comparison on simulated data. Mean + standard
deviation of the MAE and RMSE for Y and B computed across 10 distinct simulated datasets
for different simulation scenarios.

After the completion of the MCMC sampling, we use the imputed_y_estimates attribute to
get the imputed values and compare them with equivalent initial values that were removed to
get the MAEy and RMSEy. We also look at the impact of missing values on the evaluation of
underlying beta values in each scenario by calculating MAEg and RMSEg. We compare the
results obtained with the BKTR package implemented in R with the results of the pyBKTR
package implemented in Python. The results of this experiment are shown in Table 5.

We observe that estimation of missing Y values seems much more accurate when using kernel
parameters creating matrices with higher correlations. Moreover, it emerges that reaching
90% of missing values, in all scenarios, is related to an important increase in MAEy and
RMSEy . Nonetheless, it is quite impressive to see that the RMSEy still has an average value
of 1.05 even when 50% of Y values are missing for lengthscale values of 6. The results in R
and Python are very similar, indicating that the calculation implementations correspond well
in both languages.

5.3. Interpolation

Since interpolation has not been explored in the original BKTR paper (Lei et al. 2023), we
show some results results on the two types of datasets, Smaller and Larger for both the R
and the Python packages. For each dataset, we also use two different values (3 and 6) for
both the spatial kernel lengthscale ¢§™ and the temporal kernel lengthscale vi™. For each of
the four aforementioned scenarios, we simulate 10 different datasets, from which we randomly
set aside four spatial locations and six time points during the BKTR training phase. We fit
the regression on K; = 500 burn-in iterations and K5 = 500 sampling iterations with a rank
decomposition of 10. Then, we use the predict method to try to find the Y and B values
of the locations that were set aside. Subsequently, we calculate the error between the initial
data and the set-aside-data via the MAEg, RMSEg, MAEy and RMSEy which we show in
Table 6. From this table, we can observe again that using kernels that have higher correlation
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Dataset Simulation Lan Performance Metrics
Settings & | MAEg/RMSEg  MAEy/RMSEy

Smaller | gsim _ sim _g R 0.8140.26/1.1240.04  1.6540.57/2.2841.07
M=2 | ™ L Python | 0.75:£0.21/1.0340.32  1.49-:0.20/1.99+0.43
J\]g:_?zlo i _gm _g R 0.5640.18/0.76+0.26  1.1540.22/1.5140.35
= L L Python | 0.44:0.11/0.5940.16  1.06:£0.12/1.34+0.16
Larger | gm _ sm _y R | L122063/L805102 2235115/3.4442.23
M=100| " ! Python | 1.364+0.88/2.414+1.83  2.80+1.68/4.49+3.05
N=150 [ w_ m_g R | 026H007/041E005 LO5E018/TAIE037
P=6 1 ! Python | 0.21::0.04/0.3340.06  0.88::0.04/1.11+0.06

Table 6: BKTR interpolation performance comparison on simulated data. Mean + standard
deviation of the MAE and RMSE for Y and B computed across 10 distinct simulated datasets
for different simulation scenarios.

Performance Metrics
MAEz/RMSEg MAEy /RMSEy
0.24+0.06/0.38+0.10  1.054+0.14/1.344-0.22
0.2240.03/0.35+0.06  0.81+0.01/1.01+£0.01
0.24+0.06/0.37+£0.10  1.02+0.14/1.314+0.20
0.23+£0.04/0.37+0.07  0.92+0.07/1.184+0.11

Interpolated Portion

Bl and YT, Myew = 10 X Nops = 130

B? and Y2, Myps = 90 X Nyew = 20

B3 and Y3, Muew = 10 X Nyew = 20
Total B™Y and Y™V

Table 7: BKTR interpolation performance breakdown on the different portions of the pre-
dicted data. Mean =+ standard deviation of the MAE and RMSE for Y and B computed
across 10 distinct simulated datasets for different interpolation portions.

@5m = 45 = 6 yields results with a lower error in all scenarios.

Another task we want to perform with simulated data is to examine the errors of the different
interpolation segments presented in Figure 2 (right). Therefore, we investigated the perfor-
mance of BKTR for interpolation across Y, Y2 Y3, as well as the RMSEg MAEg errors
on BV across B, B2, B3. We do so with a scenario that uses a Larger simulated dataset
and simulation kernel lengthscale values of ¢§i™ = 5™ = 6. We set aside 10 locations and
20 time points during regression and use interpolation on them afterward. This translates
to having M°P® = 90 observed locations and M™% = 10 new locations. For the time points,
the equivalent sizes are N°P = 130 and N"®V = 20. We fit the BKTR regression onto the
synthetic data using K7 = 1000, K = 500 and R = 10. We repeat the simulation, regression

and interpolation exercise 10 times; the results are shown in Table 7.

From this table, we observe, via all error metrics, that the interpolation struggles more doing
interpolation for new locations (Y and B') than for new time points (Y2 and B?). Given
that time points span only one dimension, compared to the two dimensions of spatial points,
we are led to believe that the covariance pattern between observations is easier to estimate
for new time points than new locations. It also seems as though the observations at new
locations and new timestamps, Y and B3, have error values very similar to those of new
locations, suggesting that the majority of the errors in this example come from predicting
values for unseen locations.

23



24 BKTR in R and Python

6. Experimental study

This section aims to test the capacity of the BKTR package on real world data. We achieve
this task using the same bike sharing demand dataset that was used by Lei et al. (2023). A
considerable portion of this dataset was initially gathered by Wang et al. (2021), who used
information from multiple sources to create a feature-rich set of data points.

This dataset contains five distinct data frames:

bixi_station_departures (the response variable)

bixi_temporal_features (the temporal covariates)

bixi_spatial_features (the spatial covariates)

bixi_spatial_locations (the location of each spatial point)

bixi_temporal_locations (the location of each temporal point)

The station_departures data frame comes from BIXI Montréal (2023), which is a bike
sharing company based in Montreal, Canada. The response variable is the total number of
daily bike departures, for each station operated by BIXI during its 2019 season. The database
contains M = 587 rows each representing one station and N = 196 columns representing
different days from April 15 to October 27, 2019. The value of each data point in this data
frame represents the total number of bike departures for a station on a given day. The
bixi_temporal_features data includes daily meteorological covariates that vary through
time such as temperature, precipitation, humidity, etc. This information was collected from
the Environment and Climate Change Canada Historical Climate Data website. Temporal
features also include data regarding whether each date was a holiday or not, according to the
Quebec government. The station_features data frame includes data related to the location
of each bike-sharing station such as local population (taken from the 2016 Canada census data
at a dissemination block level), walk score (Walk Score 2023) and a number of other local
features collected by DMTI Spatial Inc. (2019) such as the number of universities, metro
stations, and so on. The data frame temporal_locations simply represents the position
(time_index) of each of the NV = 196 days relative to each other. Since there are no missing
days, it simply translates to a range from 0 to 195 associated to the order of each date. The
last data frame, spatial_locations, encodes the position for each of the M = 587 bike
stations with geographic coordinates (e.g. latitude and longitude).

All data frames are available, as is, in the BKTR library. A normalized version of all datasets
can also be accessed through the BixiData class of the examples module in both the BKTR
packages. As mentioned in Section 3.2, it is also possible to use a light version of the dataset,
which contains only the first 25 stations and 50 days of the original dataset. This much
smaller dataset, which allows to quickly test BKTR, can be obtained using the is_light
parameter during the initialization of the BixiData class.

6.1. Analysis

In this section we fit a BKTRRegressor to the BixiData, and then interpret the results using
different properties and visualizations that the BKTR package offers.
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We begin by fitting the number of bike departures using three covariates: the mean temper-
ature, the total precipitation in mm and the total park area. To accomplish this task, we
will pass the formula nb_departure ~ 1 + mean_temp_c + area_park + walkscore to the
initialization of the BKTRRegressor object. We will then run an MCMC sampling for 1500
iterations, including K; = 1000 burn-in iterations and K5 = 500 sampling iterations, a rank
decomposition of 8, a spatial Matérn 5/2 kernel and a locally periodic temporal kernel. To
initialize a BKTRRegressor object with the aforementioned parameters, we can simply run
the following code chunk (output omitted for brevity).

R> TSR$set_params(seed = 1, fp_type = 'float32', fp_device = 'cuda')
R> bixi_data <- BixiData$new()
R> <- KernelParameter$new(value = 7, is_fixed = TRUE)
R> k_local_periodic <- KernelSE$new() * KernelPeriodic$new(
+ period_length = KernelParameter$new(value = 7, is_fixed = TRUE))
bktr_regressor <- BKTRRegressor$new(
formula = nb_departure ~ 1 + mean_temp_c + area_park + total_precip_mm,
data_df = bixi_data$data_df,
spatial_positions_df = bixi_data$spatial_positions_df,
temporal_positions_df = bixi_data$temporal_positions_df,
rank = 8,
spatial_kernel = KernelMatern$new(smoothness_factor = 5),
temporal_kernel = kernel_local_periodic,
burn_in_iter = 1000,
sampling iter = 500)
R> bktr_regressor$mcmc_sampling()

v ]
\%

+ + + + + + + + +

After sampling completion, we can obtain the summary of the BKTRRegressor object.

> summary (bktr_regressor)

BKTR Regressor Summary

Formula: nb_departure ~ 1 + mean_temp_c + area_park + total_precip_mm

Burn-in iterations: 1000
Sampling iterations: 500
Rank decomposition: 8

Nb Spatial Locations: 587
Nb Temporal Points: 196
Nb Covariates: 4

In Sample Errors:
RMSE: 0.072
MAE: 0.053
Computation time: 1353.32s.
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-- Spatial Kernel --
Matern 5/2 Kernel

Parameter(s):
Mean Median SD Low2.5p Up97.5p
lengthscale 21.128  20.877 1.401 18.658 23.738
-- Temporal Kernel --
Composed Kernel (Mul)
SE Kernel
Parameter(s):
Mean Median SD Low2.5p Up97.5p
lengthscale 6.448 6.437 0.114 6.252 6.685
*
Periodic Kernel
Parameter(s):
Mean Median SD Low2.5p Up97.5p
lengthscale 0.941 0.942 0.020 0.899 0.979
period length Fixed Value: 7.000

Beta Estimates Summary (Aggregated Per Covariates)

Mean Median SD
Intercept 0.447 0.376 0.306
mean_temp_c -0.011 -0.008 0.042
area_park -0.005 -0.011 0.185
total_precip_mm -0.260 -0.214 0.189

The displayed model summary is again divided into four different sections. In the kernel
section, we see that even the kernel resulting from the multiplication of two kernels shows
a parameter summary in a very comprehensive fashion. In the beta coefficients estimates
section, we observe that the total_precip_mm has the lowest coefficient estimate, which
means that it has, on average, the most negative effect on the number of bike departures. The
summary reveals that it took 1353.3 seconds to complete MCMC sampling and fit over 460k
coeflicients. It is worth noting that GPU acceleration played a significant role in handling this
extensive dataset scenario, as running the same code once on our system with fp_type="'cpu'
took approximately 9.5h hours to complete (34,224s).

Another way to visualize some aspects of the fitted model is to plot the coefficient esti-
mates of covariates through time for a given spatial point. This can be done by calling the
plot_temporal_betas function on a BKTRRegressor object.

R> plot_temporal_betas(
+ bktr_regressor,

+ plot_feature_labels
+ spatial_point_label

c('mean_temp_c', 'area_park', 'total_precip mm'),
'7114 - Smith / Peel')

The result of this call is shown in Figure 6. This plot helps us visualize the non-stationarity of
the coefficients via the evolution of the influence of the covariates through time. For instance,
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Location: 7114 - Smith / Peel

1.0

0.54
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area_park
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Figure 6: Result of the plot_temporal_betas function to plot the coefficient estimates of
the covariates through time for a given spatial location.

we can see that the influence of the mean temperature on the number of bike departures is
lower during the initial and final months of the season compared to the midsummer months.
For this station, precipitation negatively impacts departures during summer.

Similarly, we can plot the coefficient estimates of the covariates through space for a given
time point. This can be done similarly by calling the plot_spatial_betas function. Note
that since the R version of BKTR uses the ggmap package (Kahle and Wickham 2013) to
plot spatial data, it requires having either a Google Maps or a Stadia Maps API key to access
map tiles. For better documentation on how to obtain and manage these keys, please refer
to the ggmap package documentation.

R> plot_spatial_betas(

+ bktr_regressor,

+ plot_feature_labels = c('mean_temp_c', 'area_park', 'total_precip_mm'),
+ temporal_point_label = '2019-07-19', nb_cols = 3

+ stadia_token = '_STADIA_API_TOKEN_'))

The result of this function call is shown in Figure 7. Again, this plot helps us to better
visualize non-stationarity with the evolution of the influence of the covariates through space.
We can observe that the precipitation has a more negative influence on the number of bike
departures in the centre of the city than in the periphery of the city.

We can demonstrate the proximity of BKTR’s estimated response variables to the actual
values by utilizing the plot_y_estimates function, employing the same code as presented
in Section 5.1. The outcomes of this function are visualized in Figure 8. These plots show
estimated values that, while slightly further from the diagonal compared to those in Figure 5,
still display a relevant correlation between estimated and observed response variables.

We can see that the BKTR package provides a very easy way to fit local regression models
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Estimated Beta at Time Point : 2018-07-01

Figure 7: Result of the plot_spatial_betas function to plot the coeflicient estimates of the
covariates through space for a given time point.

08 °

Estimated y

=1
o
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Figure 8: Scatter plot of BKTR estimated response variable vs. observed values in the BIXI
dataset.

onto a given dataset and that it also provides useful and user-friendly integrated functions to
help visualize and understand the fitted model.

6.2. Imputation Example

In this section, we will explore how to use BKTR to estimate the values for missing data
points in the response variable Y of the BIXI dataset. Imputation for BKTR can only be
done at the response variable level, which means that it is not currently possible to estimate
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missing covariate values. It is possible to observe that there are already some missing values in
the data_df data frame of the BIXI dataset for the response variable column nb_departure,
as the next code snippet illustrates.

R> y_is_na <- is.na(bixi_data$data_df$nb_departure)

R> nb_y_na <- sum(y_is_na)

R> sprintf(

+  'There is J.d missing “nb_departure’ values representing ~J.2f}}',
+ nb_y_na,

+ nb_y na / length(y_is_na) * 100))

"There is 14940 missing “nb_departure” values representing ~12.99%"

This shows us that around 13% of the response variable values are already missing from our
dataset. Let us take a look at the first three missing values of the data frame in order to find
the location and moment these values were situated.

R> bixi_data$data_df [which(y_is_na)[1:3], 1:3]

location time nb_departure
1: 10002 - Métro Charlevoix (Centre / Charlevoix) 2019-04-22 NA
2: 10002 - Métro Charlevoix (Centre / Charlevoix) 2019-05-08 NA
3: 10002 - Métro Charlevoix (Centre / Charlevoix) 2019-05-16 NA

Knowing that the location 10002 - Métro Charlevoixz (Centre / Charlevoiz) is missing multiple
values, we can effortlessly use the imputed_y_estimates attribute from the fitted regressor
instance of Section 6.1 to estimate those data points.

R> bktr_regressor$imputed_y_estimates[which(y_is_na)[1:3]]

location time y_est
1: 10002 - Métro Charlevoix (Centre / Charlevoix) 2019-04-22 0.7535655
2: 10002 - Métro Charlevoix (Centre / Charlevoix) 2019-05-08 1.0123121
3: 10002 - Métro Charlevoix (Centre / Charlevoix) 2019-05-16 1.0687331

6.3. Interpolation Example

In the BIXI case, interpolation can prove to be highly valuable in estimating the number of
departures at newly planned locations. This estimation could help significantly with allocation
planning for the number of docks needed at a given new location. Furthermore, when there
is complete absence of data for a given period (e.g. due to a reporting data centre shortage
with a duration of two days), we could simply use interpolation to gather an estimate of the
number of departure per station during that period. To test the interpolation capabilities of
BKTR, we arbitrarily select three bike stations and two contiguous days in the dataset. We
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then temporarily remove those days and stations from the initial dataset and set them aside.
Next, we fit the regressor on the remaining data, and lastly, we use the predict method on
the set-aside data with the goal of estimating the number of departures on those days at those
locations.

We start by setting aside the following three locations 4002 - Graham / Wicksteed, 7079 -
Notre-Dame / Gauvin and 6236 - Laurier / de Bordeauz. We also set aside two time points
equivalent to the dates 2019-05-01 and 2019-05-02. We then separate the three main BIXI
data frames into two portions, which are the observed data and the new data.

R> library(data.table)

R> TSR$set_params (seed=0, fp_type='float32')

R> bixi_data <- BixiData$new()

R> data_df <- bixi_data$data_df

R> spa_df <- bixi_data$spatial_positions_df

R> tem_df <- bixi_data$temporal_positions_df

R> # New locations and times

R> new_s <- c('4002 - Graham / Wicksteed',

+ '7079 - Notre-Dame / Gauvin',

+ '6236 - Laurier / de Bordeaux')

R> new_t <- ¢('2019-05-01"', '2019-05-02"')

R> # Cast to IDate to match implicit cast of data.table
R> new_t <- as.IDate(new_t)

R> # Get obs data

R> obs_s <- setdiff(unlist(spa_df$location), new_s)

R> obs_t <- setdiff(unlist(tem_df$time), new_t)

R> obs_data_df <- data_df[data_df[, .I[

+ location }inJ, obs_s & time /inj, obs_tl], 1

R> obs_spa_df <- spa_dfl[spa_df[, .I[location jinj, obs_s]], ]
R> obs_tem_df <- tem_df[tem_df[,.I[time Jinj, obs_t]], ]
R> # Get new data

R> new_data_df <- data_df[data_df[, .I[

+ location 7inJ, new_s | time %inJ, new_tl], ]

R> new_spa_df <- spa_df[spa_df[, .I[location jinj, new_s]], ]
R> new_tem_df <- tem df[tem df[, .I[time Jin), new t]], ]

Subsequently, we train the BK'TR model on the observed data to predict the new unobserved
datasets. As a last step, we compare the interpolation results with the real observed response
values when they are not missing with the usual error metrics.

R> # Train and predict

R> bktr_regressor <- BKTRRegressor$new(

+ data_df = obs_data_df,

+ spatial_positions_df = obs_spa_df,

+ temporal_positions_df = obs_tem_df,

+ #... other parameters like section 6.1)
R> preds <- bktr_regressor$predict(

+ new_data_df, new_spa_df, new_tem_df)
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Interpolated y estimates vs observed y values
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Figure 9: Scatter plot of BKTR interpolated response variable vs. observed values in the
BIXI dataset.

R> # Sort data for comparison and remove na values

R> new_data_df <- data_df[

+ data_df[, .I[location Jinj, new_s | time }inj, new_t]],

+ c('location', 'time', 'nb_departure')]

R> pred_y_df <- preds$new_y_df

R> setkey(new_data_df, location, time)

R> setkey(pred_y_df, location, time)

R> non_na_indices <- which(!is.na(new_data_df$nb_departure))
R> # Compare predictions

R> y_err <- (new_data_df$nb_departure[non_na_indices]

+ - pred_y_df$y_est[non_na_indices])
R> sprintf('Predicting /d y values || MAE: J,.4f || RMSE: J.4f',
+ length(non_na_indices), mean(abs(y_err)), sqrt(mean(y_err ~ 2)))

[1] "Predicting 1664 y values || MAE: 0.0878 || RMSE: 0.1278"

We perceive that once the data is sorted and split into training and prediction, the other
commands related to predictions are fairly easy to use. Also, since the Y values had some
missing data points, we needed to remove them from the evaluated vector to calculate the
error metrics properly. We obtain values of RMSEy = 0.088 and a MAEy = 0.128, which
are higher than the in-sample errors, but still showcase decent prediction capabilities on a
real dataset. In Figure 9, we compare the obtained interpolated Y data points with their
respective true underlying values. The results show the capacity of BKTR to estimate values
at time points or locations that were never observed before.

7. Summary and discussion
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The BKTR (Bayesian Kernelized Tensor Regression) packages presented through this work
introduce a compelling tool for local spatiotemporal regression analysis in both R and Python.
This framework offers a user-friendly endpoint, while also focusing on flexibility and compu-
tational performance. Leveraging a library specific to tensor , such as Falbel and Luraschi
(2023), enables this package to be extremely efficient and to also harness the computing speed
of dedicated floating point operation hardware such as GPUs. The sensible default values
and choices used in BKTR allows for a low-friction starting point for the majority of users,
while enabling complex fine-tuning for the more advanced ones through composed kernels
and access to multiple regression parameters. This library, implemented in two of the most
prominent statistical programming languages, makes the work realized by Lei et al. (2023)
available to the research community. The BKTR packages also bring to life a new feature,
the capacity to do predictions on unobserved time points and locations, which is called inter-
polation. Through extensive testing, we demonstrate the important capabilities of BKTR. in
regression, imputation and interpolation. Since it is one of the very first packages enabling
local regressions to fit coefficients for every location and time point combinations of very large
datasets, we think that this breakthrough will greatly improve the modelling process of vast
number of spatiotemporal analyses.

We aim to continuously improve and expand the functionalities of the BKTR packages that
we presented herein. We will do so by actively monitoring user issues and requests that will be
provided to each package’s respective GitHub. By developing the package in both languages,
we also commit the development of features in a way that will be accessible for R and Python
developers. Since both packages are based on torch and pytorch, we will keep a close eye on
both packages’ advancements to be able to provide our users with the latest enhancements
in tensor computation.

Computational details

Results in this paper were obtained using Google Colab instances with a type of shape that
was High-Ram and a V100 GPU. Thus, the calculations were done with an 32-core Xeon
processor, 51GB of total CPU RAM and 16GB of GPU Ram. We also used the default R
and Python versions in Colab, which were R 4.3.1 with torch 0.11.0 and Python 3.10.12 with
pytorch 2.1.0.

In all examples shown in the paper, we used an fp_type of 'float32' and 'cuda' as an
fp_device. We specifically looked into the influence of the device and floating point format
used during tensor operations and details are provided in Appendix D. The results show that
there is no significant difference in the parameter estimation precision when using different
floating point format or device. However, it is interesting to observe that the use of 'float32"'
over 'float64' leads to important computational speed improvements when we compare the
mean of sampling runtime, with an improvement of 36% on the CPU and a lesser uptick of
5% on the GPU. It is also possible to perceive that using the GPU improves the execution
speed for both floating point formats (223% using 'float64'and 138% using 'float32').
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A. Tensor context

In both BKTR packages, we created modules called tensor_ops containing an object named
TSR. The goal of TSR is to centralize all tensor operations and properties in one object. This
way, if in the future we needed to fix an operation or wanted to integrate another tensor
operation backend like tensorflow (Abadi et al. 2015), we could do it at a central location.
As we wanted to be able to use kernels and the BKTRRegressor independently, we decided to
set the tensor environment directly with the TSR object via the set_params method.

One of the few issues that we encountered with this implementation was that we were unable
to use the equivalent of Python’s classmethods and class properties with the R6 package.
Therefore, we decided to opt for a singleton design pattern to keep only one TSR instance with
one setting alive at a time inside the R environment. To use this design pattern, we found
that the R6P package (Lustiger 2022) was a sound implementation of it and thus decided to
add it to our dependencies.

B. Covariates reshaping

With spatiotemporal data, it is common to observe datasets where the spatial covariates do
not vary through time and where the temporal covariates do not vary in space. This is notably
the case for the BIXI data of Section 6. When such a case arises, we often see that the dataset
is expressed in a much more compressed manner. When facing this setup, we can reformulate
data_df into three matrices. The first matrix is the response variable we call y_df, which
can be of shape M x N, the spatial covariates matrix that we can call spatial_df with p;
spatial features and M locations with a shape of M X ps, and lastly, the temporal covariates
with p; temporal features and N time points with a shape of N x p;. Using these three data
frames, we can create a data_df containing M N x (1 + ps + p;) and achieve that with few
operations, repeating the matrices a certain number of times and stacking them together.
However, it is possible to achieve this more easily using the reshape_covariate_dfs utility
functions that we implemented. This function takes the three above-mentioned data frames
as arguments and another argument called y_column_name denoting the desired column name
for the response variable in the y_df data frame. With all these parameters provided, the
reshape_covariate_dfs function will return a single data frame containing the information
of the 3 data frames combined. Let us see an example of this function in action using the
BIXI dataset.

R> bixi_data <- BixiData$new()

R> spatial_df <- bixi_data$spatial_features_df

R> temporal_df <- bixi_data$temporal_features_df

R> y_df <- bixi_data$departure_df

R> p_s <- ncol(spatial_df) - 1 # Not counting index column

R> p_t <- ncol(temporal_df) - 1

R> sprintf ('Response M=}d and N=Jd', nrow(y_df), ncol(y_df))

R> sprintf('Spatial features M=Jd x p_s=/d', nrow(spatial_df), p_s)
R> sprintf('Temporal features N=Jd x p_t=/d', nrow(temporal_df), p_t)
R> data_df <- reshape_covariate_dfs(spatial_df, temporal_df,

+ y_df, 'nb_departure')

R> sprintf('Should obtain MN=Jd x P=}d', nrow(spatial_df) =*
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+ nrow(temporal_df), 1 + p_s + p_t)
R> sprintf ('Reshaped MN=)d x P=Jd', nrow(data_df), ncol(data_df) - 2)

[1] "Response M=587 and N=197"

[1] "Spatial features M=587 x p_s=13"
[1] "Temporal features N=196 x p_t=5"
[1] "Should see MN=115052 x P=19"

[1] "Reshaped MN=115052 x P=19"

C. Simulation Study

To simulate data and test BKTR we used a utility function that we implemented in BKTR
named simulate_spatiotemporal_data.

The function generates M spatial locations in a ds dimension Euclidean space with each
dimension being in a range of [0, Ss], where S5 is the scale parameter of the spatial dimensions.
It also generates N sequential time points that are in a range of [0, Sy], where S; is the time
scale parameter. Resulting time points therefore have a time resolution of S;/(N — 1).

The covariates are simulated using an intercept term, ps spatial covariates and p; temporal
covariates.

X(,p=1)=1
X(,up=2,...,14p) =14 ® x, with xf ~ N (2, Iy) (spatial covariates), (11)

S

(intercept),

X(,up=24ps...,P)=al @1}, withx? ~ N (u?, Iy) (temporal covariates),

where P =1+ ps + p; is the total number of covariates, and p? and p} are vectors of length
M and N, respectively.

The B values are generated from a multivariate normal distribution:
vee(Bg)) ~ N(0, K3™ @ K3™ @ A1), (12)

with KS™ and K*™ being covariance matrices generated by the spatial and temporal kernels,
respectively, and Aw is generated from a Wishart distribution W(Ip, P) with Ip being
an identity matrix of size P x P. Both mentioned kernels are input parameters for the
simulate_spatiotemporal_data function.

The response variable Y, for its part, is created from the product of the covariates and the B
values to which we add an error term € ~ N (0psn, 062 Iy N), where 062 is the scale parameter
of the error term and I;y is an identity matrix of size M N x MN.

In summary, the simulate_spatiotemporal_data function input parameters are

e M: nb_spatial_locations (number of spatial locations)

: nb_time_points (number of time points)

&=

nb_spatial_dimensions (number of spatial dimensions in the Euclidean space)

o S,: spatial_scale (scale of the spatial dimensions)
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o S;: time_scale (scale of the time dimension)

e u,: spatial_covariates_means (mean vector of the spatial covariates)

e u,: temporal_covariates_means (mean vector of the temporal covariates)
o kS (s, 5,,; ®M): spatial_kernel (spatial kernel generating K3™)

o ES™(t,, t,;TS™): temporal_kernel (temporal kernel generating K3™)

e 0. noise_scale (scale parameter for the added noise)

The simulate_spatiotemporal_data function returns a list (dictionary in Python) contain-
ing four data frames: data_df, spatial_locations_df, time_points_df and beta_df. The
first three data frames can directly be passed to the initialization of a BKTRRegressor. The
beta_df data frame represents the true B values and has a shape of MN x (2 + P) (in-
cluding two columns for the labels). The dataset generated has spatial covariates that are
independent of the spatial locations and temporal covariates that are independent of the time
points. Therefore, we used a process similar to the reshape_covariate_dfs utility function
(see Appendix B) to create a valid data_df data frame.

It is important to note that because of the double Kronecker product used in the Equation 12,
the covariance matrix that will be generated will use a sizeable amount of memory since its
shape will be MNP x MNP. For this reason, we decided to sample from a matrix normal
distribution instead of generating the whole covariance matrix. The used matrix normal
distribution is defined as follows:

vec(Bz)) ~ MN (Onxarp, K™ K3 @ ALY, (13)

From this distribution we can significantly reduce memory usage by sampling a tensor of size
N x MP from MNP independent N'(0,1) distributions. The generated tensor can then be
multiplied by the Cholesky decomposition of K™ and be followed by a matrix multiplication
with the Cholesky decomposition of K™ @ A_!.

D. Influence of device and floating point format

In this section, we look into the influence of the device and floating point format used during
tensor operations. The goal is to be able to select a default type of floating point format and
calculation device when using BKTR.

As some reader might have noticed, we have used a (particular) TSR component in all our
operations thus far. TSR is a wrapper containing all used tensor operations functions. This
object allows us to set the seed for our operations via the seed argument of the set_params
method. In addition to the seed argument, the set_params method can also receive infor-
mation about where the calculation should be done (on which device) and using which type
of floating point format. This information can be passed via the fp_device and fp_type
parameters of the set_params method. The available values for fp_device at the moment
are 'cpu' and 'cuda', where 'cpu' uses the computer’s central processing unit (CPU) and
'cuda' uses the graphics processing unit (GPU) if there is one on the system being used.
For the floating point format, there are also two different values that can be passed to the
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Performance Metrics
MAEz/RMSEg MAEy /RMSEy Time (s)
'float64' | 0.084+0.01/0.12+0.02 0.79+0.00/0.99+0.00 616126
'float32' | 0.09+0.01/0.14+0.03 0.7940.00/0.9940.01 478+26
'float64' | 0.08+£0.01/0.13£0.03 0.7940.00/0.9940.01 24745
'float32' | 0.084+0.02/0.124+0.03 0.7940.01/0.99+0.01 1967

fp_device fp_type

lcpul

'cuda’

Table 8: BKTR regression fitting performance comparison on simulated data using different
processing device (fp_device) and floating point format (fp_type).

fp_type parameter, which are 'float32' for using a single precision number format and
'float64' to use double precision.

In some software packages or applications, using single precision instead of double precision
can degrade the precision of the results obtained, while providing major computational speed
upticks. When using a sizeable amount of data, running matrix and tensor operations on the
GPU instead of the CPU can usually provide great computational speed gains. Therefore, we
test the four possible combinations of device and floating point format on simulated data to
assess their performance. For each combination, we use 10 new different Larger datasets (as
mentioned in 5), on which we fit the BKTR package using 500 burn-in iterations, 500 sampling
iterations and a rank decomposition of 10. The results obtained are shown in Table 8.

The results show that there is no significant difference in the parameter estimation precision
when using a different floating point format or device. However, it is interesting to observe that
the use of 'float32' over 'float64' leads to important computational speed improvements
when we compare the mean of sampling runtime, with an improvement of 29% on the CPU
and a lesser uptick of 26% on the GPU. Looking at the influence of the device, it is also
possible to perceive that using the GPU improves the execution speed for both floating point
formats (149% using 'float64'and 144% using 'float32'). Thus, in this paper, we use an
fp_type of 'float32' and 'cuda' as an fp_device.

E. Spatial coordinates projection

By default, a vast quantity of geographic tools use longitude and latitude measurements. Since
these values represent angles on earth from the meridian and equator, we need to transform
them into coordinates that can be projected in a Euclidean space. This is to ensure that we
keep valid kernels for the MCMC sampling process. One of the simple forms of projection
used on a multitude of maps is the Mercator projection (Snyder 1987). This type of projection
makes it possible to transform longitude and latitude in a 2D space by projecting them on a
plane. By doing so, the coordinates become simple x and y coordinates on a map that can
be drawn on paper. However, this comes with some limitations. To transform a sphere into a
plane, the Mercator projection greatly distorts the size of areas that are far from the equator.
To be able to do this cylindrical projection, the projection also needs to have a cutting point,
which is usually the meridian. This means that even if two points are close but located on
different sides of the meridian, they will appear to be extremely far apart on a Mercator
projection.

The above-mentioned limitations can have important impacts on some datasets. However,
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(a) Plotly OpenStreetMap scatterbox plot on (b) Mercator projection with a scale factor of
latitude and longitude SP =10

Figure 10: Visualization comparison between Plotly OpenStreetMap scatter box plot and
BKTR Mercator’s projection for BIXI spatial locations.

when using coordinates that are very close to each other (e.g. at a city level) as in Section 6,
these limitations become negligible. Therefore, we implemented a means to seamlessly trans-
form by default, with a Mercator projection, all longitude and latitude coordinates provided
to the BKTRRegressor class. When projecting the coordinates in a 2D plane, we allow the
user to choose a given scale at which to perform the projection. This scale SP is used to
transform all provided coordinates into a square with a domain for the X and Y coordinates
of [-SP/2,57/2]. Knowing the scale in which the data was projected can help the user in
choosing sensible values for kernel lengthscale afterward. To help visualize the projection, we
compare an example of the Mercator projected data for the BIXI dataset with a plot of the
respective geographic coordinates (longitude, latitude) from Plotly Technologies Inc. (2015)
using Open Street Map. The comparison is shown in Figure 10 for a scaling parameter of
SP = 10. The figure shows that the position property of the points are similar in both cases,
but in the BKTR Mercator’s projection it is now located on an X and Y axis with a range of
10.
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