--- title: "RNA-Seq Workflow Template" author: "Author: First Last Name" date: "Last update: `r format(Sys.time(), '%d %B, %Y')`" output: BiocStyle::html_document: toc_float: true code_folding: show package: systemPipeR vignette: | %\VignetteEncoding{UTF-8} %\VignetteIndexEntry{WF: RNA-Seq Workflow Template} %\VignetteEngine{knitr::rmarkdown} fontsize: 14pt bibliography: bibtex.bib editor_options: chunk_output_type: console --- ```{css, echo=FALSE} pre code { white-space: pre !important; overflow-x: scroll !important; word-break: keep-all !important; word-wrap: initial !important; } ``` ```{r style, echo = FALSE, results = 'asis'} BiocStyle::markdown() options(width = 60, max.print = 1000) knitr::opts_chunk$set( eval = as.logical(Sys.getenv("KNITR_EVAL", "TRUE")), cache = as.logical(Sys.getenv("KNITR_CACHE", "TRUE")), tidy.opts = list(width.cutoff = 60), tidy = TRUE) ``` ```{r setup, echo=FALSE, messages=FALSE, warnings=FALSE} suppressPackageStartupMessages({ library(systemPipeR) }) ``` # Introduction Users want to provide here background information about the design of their RNA-Seq project. # Samples and environment settings ## Environment settings and input data [*systemPipeRdata*](http://bioconductor.org/packages/release/data/experiment/html/systemPipeRdata.html) package is a helper package to generate a fully populated [*systemPipeR*](http://bioconductor.org/packages/release/bioc/html/systemPipeR.html) workflow environment in the current working directory with a single command. All the instruction for generating the workflow are provide in the *systemPipeRdata* vignette [here](http://www.bioconductor.org/packages/devel/data/experiment/vignettes/systemPipeRdata/inst/doc/systemPipeRdata.html#1_Introduction). ```{r genNew_wf, eval=FALSE} systemPipeRdata::genWorkenvir(workflow = "rnaseq", mydirname = "rnaseq") setwd("rnaseq") ``` Typically, the user wants to record here the sources and versions of the reference genome sequence along with the corresponding annotations. In the provided sample data set all data inputs are stored in a `data` subdirectory and all results will be written to a separate `results` directory, while the `systemPipeRNAseq.Rmd` workflow and the `targets` file are expected to be located in the parent directory. The chosen data set used by this report [SRP010938](http://www.ncbi.nlm.nih.gov/sra/?term=SRP010938) contains 18 paired-end (PE) read sets from *Arabidposis thaliana* [@Howard2013-fq]. To minimize processing time during testing, each FASTQ file has been subsetted to 90,000-100,000 randomly sampled PE reads that map to the first 100,000 nucleotides of each chromosome of the *A. thaliana* genome. The corresponding reference genome sequence (FASTA) and its GFF annotation files have been truncated accordingly. This way the entire test sample data set is less than 200MB in storage space. A PE read set has been chosen for this test data set for flexibility, because it can be used for testing both types of analysis routines requiring either SE (single end) reads or PE reads. To work with real data, users want to organize their own data similarly and substitute all test data for their own data. To rerun an established workflow on new data, the initial `targets` file along with the corresponding FASTQ files are usually the only inputs the user needs to provide. For more details, please consult the documentation [here](http://www.bioconductor.org/packages/release/bioc/vignettes/systemPipeR/inst/doc/systemPipeR.html). More information about the `targets` files from *systemPipeR* can be found [here](http://www.bioconductor.org/packages/release/bioc/vignettes/systemPipeR/inst/doc/systemPipeR.html#42_Structure_of_initial_targets_data). ### Experiment definition provided by `targets` file The `targets` file defines all FASTQ files and sample comparisons of the analysis workflow. ```{r load_targets_file, eval=TRUE} targetspath <- system.file("extdata", "targetsPE.txt", package = "systemPipeR") targets <- read.delim(targetspath, comment.char = "#") targets[1:4,-c(5,6)] ``` To work with custom data, users need to generate a _`targets`_ file containing the paths to their own FASTQ files. # Workflow environment _`systemPipeR`_ workflows can be designed and built from start to finish with a single command, importing from an R Markdown file or stepwise in interactive mode from the R console. This tutorial will demonstrate how to build the workflow in an interactive mode, appending each step. The workflow is constructed by connecting each step via `appendStep` method. Each `SYSargsList` instance contains instructions for processing a set of input files with a specific command-line or R software and the paths to the corresponding outfiles generated by a particular command-line software/step. To create a workflow within _`systemPipeR`_, we can start by defining an empty container and checking the directory structure: ```{r create_workflow, message=FALSE, eval=FALSE} library(systemPipeR) sal <- SPRproject() sal ``` ## Required packages and resources The `systemPipeR` package needs to be loaded [@H_Backman2016-bt]. ```{r load_SPR, message=FALSE, eval=FALSE, spr=TRUE} cat(crayon::blue$bold("To use this workflow, following R packages are expected:\n")) cat(c("'GenomicFeatures", "BiocParallel", "DESeq2", "ape", "edgeR", "biomaRt", "pheatmap","ggplot2'\n"), sep = "', '") ###pre-end appendStep(sal) <- LineWise(code = { library(systemPipeR) }, step_name = "load_SPR") ``` ## Read preprocessing ### Preprocessing with `preprocessReads` function The function `preprocessReads` allows to apply predefined or custom read preprocessing functions to all FASTQ files referenced in a `SYSargsList` container, such as quality filtering or adapter trimming routines. Internally, `preprocessReads` uses the `FastqStreamer` function from the `ShortRead` package to stream through large FASTQ files in a memory-efficient manner. The following example performs adapter trimming with the `trimLRPatterns` function from the `Biostrings` package. Here, we are appending this step to the `SYSargsList` object created previously. All the parameters are defined on the `preprocessReads/preprocessReads-pe.yml` file. ```{r preprocessing, message=FALSE, eval=FALSE, spr=TRUE} appendStep(sal) <- SYSargsList( step_name = "preprocessing", targets = "targetsPE.txt", dir = TRUE, wf_file = "preprocessReads/preprocessReads-pe.cwl", input_file = "preprocessReads/preprocessReads-pe.yml", dir_path = system.file("extdata/cwl", package = "systemPipeR"), inputvars = c( FileName1 = "_FASTQ_PATH1_", FileName2 = "_FASTQ_PATH2_", SampleName = "_SampleName_" ), dependency = c("load_SPR")) ``` After the preprocessing step, the `outfiles` files can be used to generate the new targets files containing the paths to the trimmed FASTQ files. The new targets information can be used for the next workflow step instance, _e.g._ running the NGS alignments with the trimmed FASTQ files. The `appendStep` function is automatically handling this connectivity between steps. Please check the next step for more details. The following example shows how one can design a custom read _'preprocessReads'_ function using utilities provided by the `ShortRead` package, and then run it in batch mode with the _'preprocessReads'_ function. Here, it is possible to replace the function used on the `preprocessing` step and modify the `sal` object. Because it is a custom function, it is necessary to save the part in the R object, and internally the `preprocessReads.doc.R` is loading the custom function. If the R object is saved with a different name (here `"param/customFCT.RData"`), please replace that accordingly in the `preprocessReads.doc.R`. Please, note that this step is not added to the workflow, here just for demonstration. First, we defined the custom function in the workflow: ```{r custom_preprocessing_function, eval=FALSE} appendStep(sal) <- LineWise( code = { filterFct <- function(fq, cutoff = 20, Nexceptions = 0) { qcount <- rowSums(as(quality(fq), "matrix") <= cutoff, na.rm = TRUE) # Retains reads where Phred scores are >= cutoff with N exceptions fq[qcount <= Nexceptions] } save(list = ls(), file = "param/customFCT.RData") }, step_name = "custom_preprocessing_function", dependency = "preprocessing" ) ``` After, we can edit the input parameter: ```{r editing_preprocessing, message=FALSE, eval=FALSE} yamlinput(sal, "preprocessing")$Fct yamlinput(sal, "preprocessing", "Fct") <- "'filterFct(fq, cutoff=20, Nexceptions=0)'" yamlinput(sal, "preprocessing")$Fct ## check the new function cmdlist(sal, "preprocessing", targets = 1) ## check if the command line was updated with success ``` ### Read trimming with Trimmomatic [Trimmomatic](http://www.usadellab.org/cms/?page=trimmomatic) software [@Bolger2014-yr] performs a variety of useful trimming tasks for Illumina paired-end and single ended data. Here, an example of how to perform this task using parameters template files for trimming FASTQ files. This step is optional. ```{r trimming, eval=FALSE, spr=TRUE} appendStep(sal) <- SYSargsList( step_name = "trimming", targets = "targetsPE.txt", wf_file = "trimmomatic/trimmomatic-pe.cwl", input_file = "trimmomatic/trimmomatic-pe.yml", dir_path = system.file("extdata/cwl", package = "systemPipeR"), inputvars=c(FileName1="_FASTQ_PATH1_", FileName2="_FASTQ_PATH2_", SampleName="_SampleName_"), dependency = "load_SPR", run_step = "optional") ``` ### FASTQ quality report The following `seeFastq` and `seeFastqPlot` functions generate and plot a series of useful quality statistics for a set of FASTQ files, including per cycle quality box plots, base proportions, base-level quality trends, relative k-mer diversity, length, and occurrence distribution of reads, number of reads above quality cutoffs and mean quality distribution. The results are written to a png file named `fastqReport.png`. ```{r fastq_report, eval=FALSE, message=FALSE, spr=TRUE} appendStep(sal) <- LineWise(code = { fastq <- getColumn(sal, step = "preprocessing", "targetsWF", column = 1) fqlist <- seeFastq(fastq = fastq, batchsize = 10000, klength = 8) png("./results/fastqReport.png", height = 162, width = 288 * length(fqlist)) seeFastqPlot(fqlist) dev.off() }, step_name = "fastq_report", dependency = "preprocessing") ``` ![](results/fastqReport.png)
Figure 1: FASTQ quality report for 18 samples

## Alignments ### Read mapping with `HISAT2` The following steps will demonstrate how to use the short read aligner `Hisat2` [@Kim2015-ve]. First, the `Hisat2` index needs to be created. ```{r hisat2_index, eval=FALSE, spr=TRUE} appendStep(sal) <- SYSargsList( step_name = "hisat2_index", dir = FALSE, targets=NULL, wf_file = "hisat2/hisat2-index.cwl", input_file="hisat2/hisat2-index.yml", dir_path="param/cwl", dependency = "load_SPR" ) ``` ### `HISAT2` mapping The parameter settings of the aligner are defined in the `workflow_hisat2-pe.cwl` and `workflow_hisat2-pe.yml` files. The following shows how to construct the corresponding *SYSargsList* object. ```{r hisat2_mapping, eval=FALSE, spr=TRUE} appendStep(sal) <- SYSargsList( step_name = "hisat2_mapping", dir = TRUE, targets ="preprocessing", wf_file = "workflow-hisat2/workflow_hisat2-pe.cwl", input_file = "workflow-hisat2/workflow_hisat2-pe.yml", dir_path = "param/cwl", inputvars = c(preprocessReads_1 = "_FASTQ_PATH1_", preprocessReads_2 = "_FASTQ_PATH2_", SampleName = "_SampleName_"), rm_targets_col = c("FileName1", "FileName2"), dependency = c("preprocessing", "hisat2_index") ) ``` To double-check the command line for each sample, please use the following: ```{r bowtie2_alignment, eval=FALSE} cmdlist(sal, step="hisat2_mapping", targets=1) ``` ### Read and alignment stats The following provides an overview of the number of reads in each sample and how many of them aligned to the reference. ```{r align_stats, eval=FALSE, spr=TRUE} appendStep(sal) <- LineWise( code = { fqpaths <- getColumn(sal, step = "preprocessing", "targetsWF", column = "FileName1") bampaths <- getColumn(sal, step = "hisat2_mapping", "outfiles", column = "samtools_sort_bam") read_statsDF <- alignStats(args = bampaths, fqpaths = fqpaths, pairEnd = TRUE) write.table(read_statsDF, "results/alignStats.xls", row.names=FALSE, quote=FALSE, sep="\t") }, step_name = "align_stats", dependency = "hisat2_mapping") ``` ## Create symbolic links for viewing BAM files in IGV The `symLink2bam` function creates symbolic links to view the BAM alignment files in a genome browser such as IGV without moving these large files to a local system. The corresponding URLs are written to a file with a path specified under `urlfile`, here `IGVurl.txt`. Please replace the directory and the user name. ```{r bam_IGV, eval=FALSE, spr=TRUE} appendStep(sal) <- LineWise( code = { bampaths <- getColumn(sal, step = "hisat2_mapping", "outfiles", column = "samtools_sort_bam") symLink2bam( sysargs = bampaths, htmldir = c("~/.html/", "somedir/"), urlbase = "http://cluster.hpcc.ucr.edu/~tgirke/", urlfile = "./results/IGVurl.txt") }, step_name = "bam_IGV", dependency = "hisat2_mapping", run_step = "optional" ) ``` ## Read quantification Reads overlapping with annotation ranges of interest are counted for each sample using the `summarizeOverlaps` function [@Lawrence2013-kt]. The read counting is preformed for exon gene regions in a non-strand-specific manner while ignoring overlaps among different genes. Subsequently, the expression count values are normalized by *reads per kp per million mapped reads* (RPKM). The raw read count table (`countDFeByg.xls`) and the corresponding RPKM table (`rpkmDFeByg.xls`) are written to separate files in the directory of this project. Parallelization is achieved with the `BiocParallel` package, here using 4 CPU cores. ### Create a database for gene annotation ```{r create_db, eval=FALSE, spr=TRUE} appendStep(sal) <- LineWise( code = { library(GenomicFeatures) txdb <- suppressWarnings(makeTxDbFromGFF(file="data/tair10.gff", format="gff", dataSource="TAIR", organism="Arabidopsis thaliana")) saveDb(txdb, file="./data/tair10.sqlite") }, step_name = "create_db", dependency = "hisat2_mapping") ``` ### Read counting with `summarizeOverlaps` in parallel mode using multiple cores ```{r read_counting, eval=FALSE, spr=TRUE} appendStep(sal) <- LineWise( code = { library(GenomicFeatures); library(BiocParallel) txdb <- loadDb("./data/tair10.sqlite") outpaths <- getColumn(sal, step = "hisat2_mapping", "outfiles", column = "samtools_sort_bam") eByg <- exonsBy(txdb, by = c("gene")) bfl <- BamFileList(outpaths, yieldSize = 50000, index = character()) multicoreParam <- MulticoreParam(workers = 4); register(multicoreParam); registered() counteByg <- bplapply(bfl, function(x) summarizeOverlaps(eByg, x, mode = "Union", ignore.strand = TRUE, inter.feature = FALSE, singleEnd = FALSE, BPPARAM = multicoreParam)) countDFeByg <- sapply(seq(along=counteByg), function(x) assays(counteByg[[x]])$counts) rownames(countDFeByg) <- names(rowRanges(counteByg[[1]])); colnames(countDFeByg) <- names(bfl) rpkmDFeByg <- apply(countDFeByg, 2, function(x) returnRPKM(counts=x, ranges=eByg)) write.table(countDFeByg, "results/countDFeByg.xls", col.names=NA, quote=FALSE, sep="\t") write.table(rpkmDFeByg, "results/rpkmDFeByg.xls", col.names=NA, quote=FALSE, sep="\t") ## Creating a SummarizedExperiment object colData <- data.frame(row.names=SampleName(sal, "hisat2_mapping"), condition=getColumn(sal, "hisat2_mapping", position = "targetsWF", column = "Factor")) colData$condition <- factor(colData$condition) countDF_se <- SummarizedExperiment::SummarizedExperiment(assays = countDFeByg, colData = colData) ## Add results as SummarizedExperiment to the workflow object SE(sal, "read_counting") <- countDF_se }, step_name = "read_counting", dependency = "create_db") ``` When providing a `BamFileList` as in the example above, `summarizeOverlaps` methods use by default `bplapply` and use the register interface from BiocParallel package. If the number of workers is not set, `MulticoreParam` will use the number of cores returned by `parallel::detectCores()`. For more information, please check `help("summarizeOverlaps")` documentation. Note, for most statistical differential expression or abundance analysis methods, such as `edgeR` or `DESeq2`, the raw count values should be used as input. The usage of RPKM values should be restricted to specialty applications required by some users, *e.g.* manually comparing the expression levels among different genes or features. ### Sample-wise correlation analysis The following computes the sample-wise Spearman correlation coefficients from the `rlog` transformed expression values generated with the `DESeq2` package. After transformation to a distance matrix, hierarchical clustering is performed with the `hclust` function and the result is plotted as a dendrogram (also see file `sample_tree.png`). ```{r sample_tree, eval=FALSE, spr=TRUE} appendStep(sal) <- LineWise( code = { library(DESeq2, quietly=TRUE); library(ape, warn.conflicts=FALSE) ## Extracting SummarizedExperiment object se <- SE(sal, "read_counting") dds <- DESeqDataSet(se, design = ~ condition) d <- cor(assay(rlog(dds)), method="spearman") hc <- hclust(dist(1-d)) png("results/sample_tree.png") plot.phylo(as.phylo(hc), type="p", edge.col="blue", edge.width=2, show.node.label=TRUE, no.margin=TRUE) dev.off() }, step_name = "sample_tree", dependency = "read_counting") ``` ![](results/sample_tree.png)
Figure 2: Correlation dendrogram of samples

## Analysis of DEGs The analysis of differentially expressed genes (DEGs) is performed with the `glm` method of the `edgeR` package [@Robinson2010-uk]. The sample comparisons used by this analysis are defined in the header lines of the `targets.txt` file starting with ``. ### Run `edgeR` ```{r run_edger, eval=FALSE, spr=TRUE} appendStep(sal) <- LineWise( code = { library(edgeR) countDF <- read.delim("results/countDFeByg.xls", row.names=1, check.names=FALSE) cmp <- readComp(stepsWF(sal)[['hisat2_mapping']], format="matrix", delim="-") edgeDF <- run_edgeR(countDF=countDF, targets=targetsWF(sal)[['hisat2_mapping']], cmp=cmp[[1]], independent=FALSE, mdsplot="") }, step_name = "run_edger", dependency = "read_counting") ``` ### Add gene descriptions ```{r custom_annot, eval=FALSE, spr=TRUE} appendStep(sal) <- LineWise( code = { library("biomaRt") m <- useMart("plants_mart", dataset="athaliana_eg_gene", host="https://plants.ensembl.org") desc <- getBM(attributes=c("tair_locus", "description"), mart=m) desc <- desc[!duplicated(desc[,1]),] descv <- as.character(desc[,2]); names(descv) <- as.character(desc[,1]) edgeDF <- data.frame(edgeDF, Desc=descv[rownames(edgeDF)], check.names=FALSE) write.table(edgeDF, "./results/edgeRglm_allcomp.xls", quote=FALSE, sep="\t", col.names = NA) }, step_name = "custom_annot", dependency = "run_edger") ``` ### Plot DEG results Filter and plot DEG results for up and down regulated genes. The definition of *up* and *down* is given in the corresponding help file. To open it, type `?filterDEGs` in the R console. ```{r filter_degs, eval=FALSE, spr=TRUE} appendStep(sal) <- LineWise( code = { edgeDF <- read.delim("results/edgeRglm_allcomp.xls", row.names=1, check.names=FALSE) png("results/DEGcounts.png") DEG_list <- filterDEGs(degDF=edgeDF, filter=c(Fold=2, FDR=20)) dev.off() write.table(DEG_list$Summary, "./results/DEGcounts.xls", quote=FALSE, sep="\t", row.names=FALSE) }, step_name = "filter_degs", dependency = "custom_annot") ``` ### Venn diagrams of DEG sets The `overLapper` function can compute Venn intersects for large numbers of sample sets (up to 20 or more) and plots 2-5 way Venn diagrams. A useful feature is the possibility to combine the counts from several Venn comparisons with the same number of sample sets in a single Venn diagram (here for 4 up and down DEG sets). ```{r venn_diagram, eval=FALSE, spr=TRUE} appendStep(sal) <- LineWise( code = { vennsetup <- overLapper(DEG_list$Up[6:9], type="vennsets") vennsetdown <- overLapper(DEG_list$Down[6:9], type="vennsets") png("results/vennplot.png") vennPlot(list(vennsetup, vennsetdown), mymain="", mysub="", colmode=2, ccol=c("blue", "red")) dev.off() }, step_name = "venn_diagram", dependency = "filter_degs") ``` ## GO term enrichment analysis ### Obtain gene-to-GO mappings The following shows how to obtain gene-to-GO mappings from `biomaRt` (here for *A. thaliana*) and how to organize them for the downstream GO term enrichment analysis. Alternatively, the gene-to-GO mappings can be obtained for many organisms from Bioconductor’s `*.db` genome annotation packages or GO annotation files provided by various genome databases. For each annotation this relatively slow preprocessing step needs to be performed only once. Subsequently, the preprocessed data can be loaded with the `load` function as shown in the next subsection. ```{r get_go_annot, eval=FALSE, spr=TRUE} appendStep(sal) <- LineWise( code = { library("biomaRt") # listMarts() # To choose BioMart database # listMarts(host="plants.ensembl.org") m <- useMart("plants_mart", host="https://plants.ensembl.org") #listDatasets(m) m <- useMart("plants_mart", dataset="athaliana_eg_gene", host="https://plants.ensembl.org") # listAttributes(m) # Choose data types you want to download go <- getBM(attributes=c("go_id", "tair_locus", "namespace_1003"), mart=m) go <- go[go[,3]!="",]; go[,3] <- as.character(go[,3]) go[go[,3]=="molecular_function", 3] <- "F"; go[go[,3]=="biological_process", 3] <- "P"; go[go[,3]=="cellular_component", 3] <- "C" go[1:4,] if(!dir.exists("./data/GO")) dir.create("./data/GO") write.table(go, "data/GO/GOannotationsBiomart_mod.txt", quote=FALSE, row.names=FALSE, col.names=FALSE, sep="\t") catdb <- makeCATdb(myfile="data/GO/GOannotationsBiomart_mod.txt", lib=NULL, org="", colno=c(1,2,3), idconv=NULL) save(catdb, file="data/GO/catdb.RData") }, step_name = "get_go_annot", dependency = "filter_degs") ``` ### Batch GO term enrichment analysis Apply the enrichment analysis to the DEG sets obtained the above differential expression analysis. Note, in the following example the `FDR` filter is set here to an unreasonably high value, simply because of the small size of the toy data set used in this vignette. Batch enrichment analysis of many gene sets is performed with the function. When `method=all`, it returns all GO terms passing the p-value cutoff specified under the `cutoff` arguments. When `method=slim`, it returns only the GO terms specified under the `myslimv` argument. The given example shows how a GO slim vector for a specific organism can be obtained from `BioMart`. ```{r go_enrich, eval=FALSE, spr=TRUE} appendStep(sal) <- LineWise( code = { library("biomaRt") load("data/GO/catdb.RData") DEG_list <- filterDEGs(degDF=edgeDF, filter=c(Fold=2, FDR=50), plot=FALSE) up_down <- DEG_list$UporDown; names(up_down) <- paste(names(up_down), "_up_down", sep="") up <- DEG_list$Up; names(up) <- paste(names(up), "_up", sep="") down <- DEG_list$Down; names(down) <- paste(names(down), "_down", sep="") DEGlist <- c(up_down, up, down) DEGlist <- DEGlist[sapply(DEGlist, length) > 0] BatchResult <- GOCluster_Report(catdb=catdb, setlist=DEGlist, method="all", id_type="gene", CLSZ=2, cutoff=0.9, gocats=c("MF", "BP", "CC"), recordSpecGO=NULL) m <- useMart("plants_mart", dataset="athaliana_eg_gene", host="https://plants.ensembl.org") goslimvec <- as.character(getBM(attributes=c("goslim_goa_accession"), mart=m)[,1]) BatchResultslim <- GOCluster_Report(catdb=catdb, setlist=DEGlist, method="slim", id_type="gene", myslimv=goslimvec, CLSZ=10, cutoff=0.01, gocats=c("MF", "BP", "CC"), recordSpecGO=NULL) write.table(BatchResultslim, "results/GOBatchSlim.xls", row.names=FALSE, quote=FALSE, sep="\t") }, step_name = "go_enrich", dependency = "get_go_annot") ``` ### Plot batch GO term results The `data.frame` generated by `GOCluster` can be plotted with the `goBarplot` function. Because of the variable size of the sample sets, it may not always be desirable to show the results from different DEG sets in the same bar plot. Plotting single sample sets is achieved by subsetting the input data frame as shown in the first line of the following example. ```{r go_plot, eval=FALSE, spr=TRUE} appendStep(sal) <- LineWise( code = { gos <- BatchResultslim[grep("M6-V6_up_down", BatchResultslim$CLID), ] gos <- BatchResultslim png("results/GOslimbarplotMF.png", height=8, width=10) goBarplot(gos, gocat="MF") goBarplot(gos, gocat="BP") goBarplot(gos, gocat="CC") dev.off() }, step_name = "go_plot", dependency = "go_enrich") ``` ![](results/GOslimbarplotMF.png)
Figure 5: GO Slim Barplot for MF Ontology

## Clustering and heat maps The following example performs hierarchical clustering on the `rlog` transformed expression matrix subsetted by the DEGs identified in the above differential expression analysis. It uses a Pearson correlation-based distance measure and complete linkage for cluster joining. ```{r heatmap, eval=FALSE, spr=TRUE} appendStep(sal) <- LineWise( code = { library(pheatmap) geneids <- unique(as.character(unlist(DEG_list[[1]]))) y <- assay(rlog(dds))[geneids, ] png("results/heatmap1.png") pheatmap(y, scale="row", clustering_distance_rows="correlation", clustering_distance_cols="correlation") dev.off() }, step_name = "heatmap", dependency = "go_enrich") ``` ![](results/heatmap1.png)
Figure 6: Heat Map with Hierarchical Clustering Dendrograms of DEGs

## Workflow Information ```{r sessionInfo, eval=FALSE, spr=TRUE} appendStep(sal) <- LineWise( code = { sessionInfo() }, step_name = "sessionInfo", dependency = "heatmap") ``` # Running workflow ## Interactive job submissions in a single machine For running the workflow, `runWF` function will execute all the steps store in the workflow container. The execution will be on a single machine without submitting to a queuing system of a computer cluster. ```{r runWF, eval=FALSE} sal <- runWF(sal) ``` ## Parallelization on clusters Alternatively, the computation can be greatly accelerated by processing many files in parallel using several compute nodes of a cluster, where a scheduling/queuing system is used for load balancing. The `resources` list object provides the number of independent parallel cluster processes defined under the `Njobs` element in the list. The following example will run 18 processes in parallel using each 4 CPU cores. If the resources available on a cluster allow running all 18 processes at the same time, then the shown sample submission will utilize in a total of 72 CPU cores. Note, `runWF` can be used with most queueing systems as it is based on utilities from the `batchtools` package, which supports the use of template files (_`*.tmpl`_) for defining the run parameters of different schedulers. To run the following code, one needs to have both a `conffile` (see _`.batchtools.conf.R`_ samples [here](https://mllg.github.io/batchtools/)) and a `template` file (see _`*.tmpl`_ samples [here](https://github.com/mllg/batchtools/tree/master/inst/templates)) for the queueing available on a system. The following example uses the sample `conffile` and `template` files for the Slurm scheduler provided by this package. The resources can be appended when the step is generated, or it is possible to add these resources later, as the following example using the `addResources` function: ```{r runWF_cluster, eval=FALSE} # wall time in mins, memory in MB resources <- list(conffile=".batchtools.conf.R", template="batchtools.slurm.tmpl", Njobs=18, walltime=120, ntasks=1, ncpus=4, memory=1024, partition = "short" ) sal <- addResources(sal, c("hisat2_mapping"), resources = resources) sal <- runWF(sal) ``` ## Visualize workflow _`systemPipeR`_ workflows instances can be visualized with the `plotWF` function. ```{r plotWF, eval=FALSE} plotWF(sal, rstudio = TRUE) ``` ## Checking workflow status To check the summary of the workflow, we can use: ```{r statusWF, eval=FALSE} sal statusWF(sal) ``` ## Accessing logs report _`systemPipeR`_ compiles all the workflow execution logs in one central location, making it easier to check any standard output (`stdout`) or standard error (`stderr`) for any command-line tools used on the workflow or the R code stdout. ```{r logsWF, eval=FALSE} sal <- renderLogs(sal) ``` ## Tools used To check command-line tools used in this workflow, use `listCmdTools`, and use `listCmdModules` to check if you have a modular system. The following code will print out tools required in your custom SPR project in the report. In case you are running the workflow for the first and do not have a project yet, or you just want to browser this workflow, following code displays the tools required by default. ```{r list_tools} if(file.exists(file.path(".SPRproject", "SYSargsList.yml"))) { local({ sal <- systemPipeR::SPRproject(resume = TRUE) systemPipeR::listCmdTools(sal) systemPipeR::listCmdModules(sal) }) } else { cat(crayon::blue$bold("Tools and modules required by this workflow are:\n")) cat(c("trimmomatic/0.39", "samtools/1.14", "hisat2/2.1.0"), sep = "\n") } ``` ## Report Session Info This is the session information for rendering this report. To access the session information of workflow running, check HTML report of `renderLogs`. ```{r report_session_info, eval=TRUE} sessionInfo() ``` # Funding This project is funded by NSF award [ABI-1661152](https://www.nsf.gov/awardsearch/showAward?AWD_ID=1661152). # References