Package 'pcaExplorer'

July 14, 2025

Type Package

Title Interactive Visualization of RNA-seq Data Using a Principal Components Approach

Version 3.2.0

Date 2024-12-19

Description This package provides functionality for interactive visualization of RNA-seq datasets based on Principal Components Analysis. The methods provided allow for quick information extraction and effective data exploration. A Shiny application encapsulates the whole analysis.

License MIT + file LICENSE

Imports DESeq2, SummarizedExperiment, mosdef (>= 1.1.0), GenomicRanges, IRanges, S4Vectors, genefilter, ggplot2 (>= 2.0.0), heatmaply, plotly, scales, NMF, plyr, topGO, limma, GOstats, GO.db, AnnotationDbi, shiny (>= 0.12.0), shinydashboard, shinyBS, ggrepel, DT, shinyAce, threejs, biomaRt, pheatmap, knitr, rmarkdown, base64enc, tidyr, grDevices, methods

- Suggests testthat, BiocStyle, markdown, airway, org.Hs.eg.db, htmltools
- URL https://github.com/federicomarini/pcaExplorer,

https://federicomarini.github.io/pcaExplorer/

BugReports https://github.com/federicomarini/pcaExplorer/issues

biocViews ImmunoOncology, Visualization, RNASeq, DimensionReduction, PrincipalComponent, QualityControl, GUI, ReportWriting, ShinyApps

VignetteBuilder knitr

RoxygenNote 7.3.2

Encoding UTF-8

NeedsCompilation no

Roxygen list(markdown = TRUE)

correlatePCs

git_url https://git.bioconductor.org/packages/pcaExplorer

git_branch RELEASE_3_21

git_last_commit c394b92

git_last_commit_date 2025-04-15

Repository Bioconductor 3.21

Date/Publication 2025-07-13

Author Federico Marini [aut, cre] (ORCID: https://orcid.org/0000-0003-3252-7758>)

Maintainer Federico Marini <marinif@uni-mainz.de>

Contents

correlatePCs	2
deprecated	3
distro_expr	4
geneprofiler	4
genespca	5
get_annotation	8
get_annotation_orgdb	8
hi_loadings	9
limmaquickpca2go	10
makeExampleDESeqDataSet_multifac	11
pair_corr	13
pca2go	13
pcaExplorer	15
pcaExplorer-pkg	17
pcaplot	17
pcaplot3d	18
pcascree	20
plotPCcorrs	20
topGOtable	21
	24
	24

Index

correlatePCs

Principal components (cor)relation with experimental covariates

Description

Computes the significance of (cor)relations between PCA scores and the sample experimental covariates, using Kruskal-Wallis test for categorial variables and the cor.test based on Spearman's correlation for continuous variables

deprecated

Usage

```
correlatePCs(pcaobj, coldata, pcs = 1:4)
```

Arguments

pcaobj	A prcomp object
coldata	A data.frame object containing the experimental covariates
pcs	A numeric vector, containing the corresponding PC number

Value

A data.frame object with computed p values for each covariate and for each principal component

Examples

```
library(DESeq2)
dds <- makeExampleDESeqDataSet_multifac(betaSD_condition = 3, betaSD_tissue = 1)
rlt <- DESeq2::rlogTransformation(dds)
pcaobj <- prcomp(t(assay(rlt)))
correlatePCs(pcaobj, colData(dds))</pre>
```

deprecated Deprecated functions in pcaExplorer	
--	--

Description

Functions that are on their way to the function afterlife. Their successors are also listed.

Arguments

Ignored arguments.

Details

The successors of these functions are likely coming after the rework that led to the creation of the mosdef package. See more into its documentation for more details.

Value

All functions throw a warning, with a deprecation message pointing towards its descendent (if available).

Transitioning to the mosdef framework

• topGOtable() is now being replaced by the more flexible mosdef::run_topGO() function

Author(s)

Federico Marini

Examples

```
# try(topGOtable())
```

distro_expr

Plot distribution of expression values

Description

Plot distribution of expression values

Usage

distro_expr(rld, plot_type = "density")

Arguments

rld	A DESeq2::DESeqTransform() object.
plot_type	Character, choose one of boxplot, violin or density. Defaults to density

Value

A plot with the distribution of the expression values

Examples

```
dds <- makeExampleDESeqDataSet_multifac(betaSD_condition = 3, betaSD_tissue = 1)
rlt <- DESeq2::rlogTransformation(dds)
distro_expr(rlt)</pre>
```

Description

Extract and plot the expression profile of genes

```
geneprofiler(se, genelist = NULL, intgroup = "condition", plotZ = FALSE)
```

genespca

Arguments

se	A DESeq2::DESeqDataSet() object, or a DESeq2::DESeqTransform() object.
genelist	An array of characters, including the names of the genes of interest of which the profile is to be plotted
intgroup	A factor, needs to be in the colnames of colData(se)
plotZ	Logical, whether to plot the scaled expression values. Defaults to FALSE

Value

A plot of the expression profile for the genes

Examples

```
dds <- makeExampleDESeqDataSet_multifac(betaSD_condition = 3, betaSD_tissue = 1)
rlt <- DESeq2::rlogTransformation(dds)
geneprofiler(rlt, paste0("gene", sample(1:1000, 20)))
geneprofiler(rlt, paste0("gene", sample(1:1000, 20)), plotZ = TRUE)</pre>
```

genespca

Principal components analysis on the genes

Description

Computes and plots the principal components of the genes, eventually displaying the samples as in a typical biplot visualization.

```
genespca(
  х,
  ntop,
  choices = c(1, 2),
  arrowColors = "steelblue",
  groupNames = "group",
 biplot = TRUE,
  scale = 1,
  pc.biplot = TRUE,
  obs.scale = 1 - scale,
  var.scale = scale,
  groups = NULL,
  ellipse = FALSE,
  ellipse.prob = 0.68,
  labels = NULL,
  labels.size = 3,
  alpha = 1,
  var.axes = TRUE,
```

```
circle = FALSE,
circle.prob = 0.69,
varname.size = 4,
varname.adjust = 1.5,
varname.abbrev = FALSE,
returnData = FALSE,
coordEqual = FALSE,
scaleArrow = 1,
useRownamesAsLabels = TRUE,
point_size = 2,
annotation = NULL
)
```

x	A DESeq2::DESeqTransform() object, with data in assay(x), produced for ex- ample by either DESeq2::rlog() or DESeq2::varianceStabilizingTransformation()
ntop	Number of top genes to use for principal components, selected by highest row variance
choices	Vector of two numeric values, to select on which principal components to plot
arrowColors	Vector of character, either as long as the number of the samples, or one single value
groupNames	Factor containing the groupings for the input data. Is efficiently chosen as the (interaction of more) factors in the colData for the object provided
biplot	Logical, whether to additionally draw the samples labels as in a biplot represen- tation
scale	Covariance biplot (scale = 1), form biplot (scale = 0). When scale = 1, the inner product between the variables approximates the covariance and the distance between the points approximates the Mahalanobis distance.
pc.biplot	Logical, for compatibility with biplot.princomp()
obs.scale	Scale factor to apply to observations
var.scale	Scale factor to apply to variables
groups	Optional factor variable indicating the groups that the observations belong to. If provided the points will be colored according to groups
ellipse	Logical, draw a normal data ellipse for each group
ellipse.prob	Size of the ellipse in Normal probability
labels	optional Vector of labels for the observations
labels.size	Size of the text used for the labels
alpha	Alpha transparency value for the points $(0 = \text{transparent}, 1 = \text{opaque})$
var.axes	Logical, draw arrows for the variables?
circle	Logical, draw a correlation circle? (only applies when prcomp was called with $scale = TRUE$ and when var.scale = 1)
circle.prob	Size of the correlation circle in Normal probability

genespca

varname.size	Size of the text for variable names	
varname.adjust	Adjustment factor the placement of the variable names, '>= 1' means farther from the arrow	
varname.abbrev	Logical, whether or not to abbreviate the variable names	
returnData	Logical, if TRUE returns a data.frame for further use, containing the selected principal components for custom plotting	
coordEqual	Logical, default FALSE, for allowing brushing. If TRUE, plot using equal scale cartesian coordinates	
scaleArrow	Multiplicative factor, usually >=1, only for visualization purposes, to allow for distinguishing where the variables are plotted	
useRownamesAsLabels		
	Logical, if TRUE uses the row names as labels for plotting	
point_size	Size of the points to be plotted for the observations (genes)	
annotation	A data.frame object, with row.names as gene identifiers (e.g. ENSEMBL ids) and a column, gene_name, containing e.g. HGNC-based gene symbols	

Details

The implementation of this function is based on the beautiful ggbiplot package developed by Vince Vu, available at https://github.com/vqv/ggbiplot. The adaptation and additional parameters are tailored to display typical genomics data such as the transformed counts of RNA-seq experiments

Value

An object created by ggplot, which can be assigned and further customized.

```
library(DESeq2)
dds <- makeExampleDESeqDataSet_multifac(betaSD_condition = 3, betaSD_tissue = 1)
rlt <- rlogTransformation(dds)
groups <- colData(dds)$condition
groups <- factor(groups, levels = unique(groups))
cols <- scales::hue_pal()(2)[groups]
genespca(rlt, ntop=100, arrowColors = cols, groupNames = groups)
groups_multi <- interaction(as.data.frame(colData(rlt)[, c("condition", "tissue")]))
groups_multi <- factor(groups_multi, levels = unique(groups_multi))
cols multi <- scales::hue_pal()(length(levels(groups_multi)))[factor(groups_multi)]</pre>
```

```
cols_multi <- scales::hue_pal()(length(levels(groups_multi)))[factor(groups_multi)]
genespca(rlt, ntop = 100, arrowColors = cols_multi, groupNames = groups_multi)</pre>
```

get_annotation

Description

Get an annotation data frame from biomaRt

Usage

```
get_annotation(dds, biomart_dataset, idtype)
```

Arguments

dds	A DESeq2::DESeqDataSet() object	
biomart_dataset		
	A biomaRt dataset to use. To see the list, type mart = useMart('ensembl'), followed by listDatasets(mart).	
idtype	Character, the ID type of the genes as in the row names of dds, to be used for the call to biomaRt::getBM()	

Value

A data frame for ready use in pcaExplorer, retrieved from biomaRt.

Examples

get_annotation_orgdb Get an annotation data frame from org db packages

Description

Get an annotation data frame from org db packages

Usage

get_annotation_orgdb(dds, orgdb_species, idtype, key_for_genenames = "SYMBOL")

hi_loadings

Arguments

dds	A DESeq2::DESeqDataSet() object	
orgdb_species	Character string, named as the org.XX.eg.db package which should be available in Bioconductor	
idtype	Character, the ID type of the genes as in the row names of dds, to be used for the call to AnnotationDbi::mapIds()	
key_for_genenames		
	Character, corresponding to the column name for the key in the orgDb package containing the official gene name (often called gene symbol). This parameter defaults to "SYMBOL", but can be adjusted in case the key is not found in the annotation package (e.g. for org.Sc.sgd.db).	

Value

A data frame for ready use in pcaExplorer, retrieved from the org db packages

Examples

hi_loadings

Extract genes with highest loadings

Description

Extract genes with highest loadings

```
hi_loadings(
   pcaobj,
   whichpc = 1,
   topN = 10,
   exprTable = NULL,
   annotation = NULL,
   title = "Top/bottom loadings"
)
```

pcaobj	A prcomp object
whichpc	An integer number, corresponding to the principal component of interest
topN	Integer, number of genes with top and bottom loadings
exprTable	A matrix object, e.g. the counts of a DESeq2::DESeqDataSet(). If not NULL, returns the counts matrix for the selected genes
annotation	A data.frame object, with row.names as gene identifiers (e.g. ENSEMBL ids) and a column, gene_name, containing e.g. HGNC-based gene symbols
title	The title of the plot

Value

A ggplot2 object, or a matrix, if exprTable is not null

Examples

```
dds <- makeExampleDESeqDataSet_multifac(betaSD = 3, betaSD_tissue = 1)
rlt <- DESeq2::rlogTransformation(dds)
pcaobj <- prcomp(t(SummarizedExperiment::assay(rlt)))
hi_loadings(pcaobj, topN = 20)
hi_loadings(pcaobj, topN = 10, exprTable = dds)
hi_loadings(pcaobj, topN = 10, exprTable = counts(dds))</pre>
```

limmaquickpca2go	Functional interpretation of the principal components, based on sim-
	ple overrepresentation analysis

Description

Extracts the genes with the highest loadings for each principal component, and performs functional enrichment analysis on them using the simple and quick routine provided by the limma package

Usage

```
limmaquickpca2go(
   se,
   pca_ngenes = 10000,
   inputType = "ENSEMBL",
   organism = "Mm",
   loadings_ngenes = 500,
   background_genes = NULL,
   scale = FALSE,
   ...
)
```

se	A DESeq2::DESeqTransform() object, with data in assay(se), produced for example by either DESeq2::rlog() or DESeq2::varianceStabilizingTransformation()	
pca_ngenes	Number of genes to use for the PCA	
inputType	Input format type of the gene identifiers. Deafults to ENSEMBL, that then will be converted to ENTREZ ids. Can assume values such as ENTREZID,GENENAME or SYMBOL, like it is normally used with the select function of AnnotationDbi	
organism	Character abbreviation for the species, using org.XX.eg.db for annotation	
loadings_ngenes		
	Number of genes to extract the loadings (in each direction)	
background_genes		
	Which genes to consider as background.	
scale	Logical, defaults to FALSE, scale values for the PCA	
	Further parameters to be passed to the goana routine	

Value

A nested list object containing for each principal component the terms enriched in each direction. This object is to be thought in combination with the displaying feature of the main pcaExplorer() function

Examples

End(Not run)

Description

Constructs a simulated dataset of Negative Binomial data from different conditions. The fold changes between the conditions can be adjusted with the betaSD_condition and the betaSD_tissue arguments.

Usage

```
makeExampleDESeqDataSet_multifac(
  n = 1000,
  m = 12,
  betaSD_condition = 1,
  betaSD_tissue = 3,
  interceptMean = 4,
  interceptSD = 2,
  dispMeanRel = function(x) 4/x + 0.1,
  sizeFactors = rep(1, m)
)
```

Arguments

n	number of rows (genes)	
m	number of columns (samples)	
betaSD_condition		
	the standard deviation for condition betas, i.e. beta ~ N(0,betaSD)	
betaSD_tissue	the standard deviation for tissue betas, i.e. beta ~ $N(0,betaSD)$	
interceptMean	the mean of the intercept betas (log2 scale)	
interceptSD	the standard deviation of the intercept betas (log2 scale)	
dispMeanRel	a function specifying the relationship of the dispersions on $\texttt{2^trueIntercept}$	
sizeFactors	multiplicative factors for each sample	

Details

This function is designed and inspired following the proposal of DESeq2::makeExampleDESeqDataSet() from the DESeq2 package. Credits are given to Mike Love for the nice initial implementation

Value

a DESeq2::DESeqDataSet() with true dispersion, intercept for two factors (condition and tissue) and beta values in the metadata columns. Note that the true betas are provided on the log2 scale.

```
dds <- makeExampleDESeqDataSet_multifac(betaSD_condition = 3, betaSD_tissue = 1)
dds
dds2 <- makeExampleDESeqDataSet_multifac(betaSD_condition = 1, betaSD_tissue = 4)
dds2</pre>
```

pair_corr

Description

Pairwise scatter and correlation plot of counts

Usage

```
pair_corr(df, log = FALSE, method = "pearson", use_subset = TRUE)
```

Arguments

df	A data frame, containing the (raw/normalized/transformed) counts
log	Logical, whether to convert the input values to log2 (with addition of a pseudo- count). Defaults to FALSE.
method	Character string, one of pearson (default), kendall, or spearman as in cor
use_subset	Logical value. If TRUE, only 1000 values per sample will be used to speed up the plotting operations.

Value

A plot with pairwise scatter plots and correlation coefficients

Examples

pca2go

Functional interpretation of the principal components

Description

Extracts the genes with the highest loadings for each principal component, and performs functional enrichment analysis on them using routines and algorithms from the topGO package

Usage

```
pca2go(
    se,
    pca_ngenes = 10000,
    annotation = NULL,
    inputType = "geneSymbol",
    organism = "Mm",
    ensToGeneSymbol = FALSE,
    loadings_ngenes = 500,
    background_genes = NULL,
    scale = FALSE,
    return_ranked_gene_loadings = FALSE,
    annopkg = NULL,
    ....
)
```

Arguments

se	A DESeq2::DESeqTransform() object, with data in assay(se), produced for example by either DESeq2::rlog() or DESeq2::varianceStabilizingTransformation()	
pca_ngenes	Number of genes to use for the PCA	
annotation	A data.frame object, with row.names as gene identifiers (e.g. ENSEMBL ids) and a column, gene_name, containing e.g. HGNC-based gene symbols	
inputType	Input format type of the gene identifiers. Will be used by the routines of topG0	
organism	Character abbreviation for the species, using org.XX.eg.db for annotation	
ensToGeneSymbo	1	
	Logical, whether to expect ENSEMBL gene identifiers, to convert to gene symbols with the annotation provided	
loadings_ngenes		
	Number of genes to extract the loadings (in each direction)	
background_genes		
	Which genes to consider as background.	
scale	Logical, defaults to FALSE, scale values for the PCA	
return_ranked_gene_loadings		
	Logical, defaults to FALSE. If TRUE, simply returns a list containing the top ranked genes with hi loadings in each PC and in each direction	
annopkg	String containing the name of the organism annotation package. Can be used to override the organism parameter, e.g. in case of alternative identifiers used in the annotation package (Arabidopsis with TAIR)	
	Further parameters to be passed to the topGO routine	

Value

A nested list object containing for each principal component the terms enriched in each direction. This object is to be thought in combination with the displaying feature of the main pcaExplorer() function

pcaExplorer

Examples

```
library("airway")
library("DESeq2")
data("airway", package = "airway")
airwav
dds_airway <- DESeqDataSet(airway, design= ~ cell + dex)</pre>
## Not run:
rld_airway <- rlogTransformation(dds_airway)</pre>
# constructing the annotation object
anno_df <- data.frame(gene_id = rownames(dds_airway),</pre>
                       stringsAsFactors = FALSE)
library("AnnotationDbi")
library("org.Hs.eg.db")
anno_df$gene_name <- mapIds(org.Hs.eg.db,</pre>
                              keys = anno_df$gene_id,
                              column = "SYMBOL",
                              keytype = "ENSEMBL",
                              multiVals = "first")
rownames(anno_df) <- anno_df$gene_id</pre>
bg_ids <- rownames(dds_airway)[rowSums(counts(dds_airway)) > 0]
library(topGO)
pca2go_airway <- pca2go(rld_airway,</pre>
                         annotation = anno_df,
                         organism = "Hs",
                         ensToGeneSymbol = TRUE,
                         background_genes = bg_ids)
```

End(Not run)

pcaExplorer

Explore a dataset from a PCA perspective

Description

Launch a Shiny App for interactive exploration of a dataset from the perspective of Principal Components Analysis

```
pcaExplorer(
  dds = NULL,
  dst = NULL,
  countmatrix = NULL,
  coldata = NULL,
  pca2go = NULL,
  annotation = NULL,
  runLocal = TRUE
)
```

dds	A DESeq2::DESeqDataSet() object. If not provided, then a countmatrix and a coldata need to be provided. If none of the above is provided, it is possible to upload the data during the execution of the Shiny App
dst	A DESeq2::DESeqTransform() object. Can be computed from the dds object if left NULL. If none is provided, then a countmatrix and a coldata need to be provided. If none of the above is provided, it is possible to upload the data during the execution of the Shiny App
countmatrix	A count matrix, with genes as rows and samples as columns. If not provided, it is possible to upload the data during the execution of the Shiny App
coldata	A data frame containing the info on the covariates of each sample. If not pro- vided, it is possible to upload the data during the execution of the Shiny App
pca2go	An object generated by the pca2go() function, which contains the information on enriched functional categories in the genes that show the top or bottom load- ings in each principal component of interest. If not provided, it is possible to compute live during the execution of the Shiny App
annotation	A data.frame object, with row.names as gene identifiers (e.g. ENSEMBL ids) and a column, gene_name, containing e.g. HGNC-based gene symbols
runLocal	A logical indicating whether the app is to be run locally or remotely on a server, which determines how documentation will be accessed.

Value

A Shiny App is launched for interactive data exploration

pcaExplorer-pkg

pcaExplorer: analyzing time-lapse microscopy imaging, from detection to tracking

Description

pcaExplorer provides functionality for interactive visualization of RNA-seq datasets based on Principal Components Analysis. The methods provided allow for quick information extraction and effective data exploration. A Shiny application encapsulates the whole analysis.

Details

pcaExplorer provides functionality for interactive visualization of RNA-seq datasets based on Principal Components Analysis. The methods provided allow for quick information extraction and effective data exploration. A Shiny application encapsulates the whole analysis.

Author(s)

Federico Marini <marinif@uni-mainz.de>, 2016

Maintainer: Federico Marini <marinif@uni-mainz.de>

See Also

Useful links:

- https://github.com/federicomarini/pcaExplorer
- https://federicomarini.github.io/pcaExplorer/
- Report bugs at https://github.com/federicomarini/pcaExplorer/issues

pcaplot

Sample PCA plot for transformed data

Description

Plots the results of PCA on a 2-dimensional space

```
pcaplot(
    x,
    intgroup = NULL,
    ntop = 500,
    returnData = FALSE,
    title = NULL,
    pcX = 1,
```

```
pcY = 2,
text_labels = TRUE,
point_size = 3,
ellipse = TRUE,
ellipse.prob = 0.95
)
```

x	A DESeq2::DESeqTransform() object, with data in assay(x), produced for ex- ample by either DESeq2::rlog() or DESeq2::varianceStabilizingTransformation()/DESeq2::vst
intgroup	Interesting groups: a character vector of names in colData(x) to use for group- ing. Defaults to NULL, which would then select the first column of the colData slot
ntop	Number of top genes to use for principal components, selected by highest row variance
returnData	logical, if TRUE returns a data.frame for further use, containing the selected principal components and intgroup covariates for custom plotting
title	The plot title
рсХ	The principal component to display on the x axis
рсҮ	The principal component to display on the y axis
text_labels	Logical, whether to display the labels with the sample identifiers
point_size	Integer, the size of the points for the samples
ellipse	Logical, whether to display the confidence ellipse for the selected groups
ellipse.prob	Numeric, a value in the interval [0;1)

Value

An object created by ggplot, which can be assigned and further customized.

Examples

```
dds <- makeExampleDESeqDataSet_multifac(betaSD_condition = 3, betaSD_tissue = 1)
rlt <- DESeq2::rlogTransformation(dds)
pcaplot(rlt, ntop = 200)</pre>
```

```
pcaplot3d
```

Sample PCA plot for transformed data

Description

Plots the results of PCA on a 3-dimensional space, interactively

pcaplot3d

Usage

```
pcaplot3d(
    x,
    intgroup = "condition",
    ntop = 500,
    returnData = FALSE,
    title = NULL,
    pcX = 1,
    pcY = 2,
    pcZ = 3,
    text_labels = TRUE,
    point_size = 3
)
```

Arguments

x	A DESeq2::DESeqTransform() object, with data in assay(x), produced for ex- ample by either DESeq2::rlog() or DESeq2::varianceStabilizingTransformation()
intgroup	Interesting groups: a character vector of names in colData(x) to use for group- ing
ntop	Number of top genes to use for principal components, selected by highest row variance
returnData	logical, if TRUE returns a data.frame for further use, containing the selected principal components and intgroup covariates for custom plotting
title	The plot title
рсХ	The principal component to display on the x axis
рсҮ	The principal component to display on the y axis
pcZ	The principal component to display on the z axis
text_labels	Logical, whether to display the labels with the sample identifiers
point_size	Integer, the size of the points for the samples

Value

A html-based visualization of the 3d PCA plot

```
dds <- makeExampleDESeqDataSet_multifac(betaSD_condition = 3, betaSD_tissue = 1)
rlt <- DESeq2::rlogTransformation(dds)
pcaplot3d(rlt, ntop = 200)</pre>
```

pcascree

Description

Produces a scree plot for investigating the proportion of explained variance, or alternatively the cumulative value

Usage

pcascree(obj, type = c("pev", "cev"), pc_nr = NULL, title = NULL)

Arguments

obj	A prcomp object
type	Display absolute proportions or cumulative proportion. Possible values: "pev" or "cev"
pc_nr	How many principal components to display max
title	Title of the plot

Value

An object created by ggplot, which can be assigned and further customized.

Examples

```
dds <- makeExampleDESeqDataSet_multifac(betaSD_condition = 3, betaSD_tissue = 1)
rlt <- DESeq2::rlogTransformation(dds)
pcaobj <- prcomp(t(SummarizedExperiment::assay(rlt)))
pcascree(pcaobj, type = "pev")
pcascree(pcaobj, type = "cev", title = "Cumulative explained proportion of variance - Test dataset")</pre>
```

plotPCcorrs	Plot significance of (cor)relations of covariates VS principal compo-
	nents

Description

Plots the significance of the (cor)relation of each covariate vs a principal component

Usage

plotPCcorrs(pccorrs, pc = 1, logp = TRUE)

topGOtable

Arguments

pccorrs	A data.frame object generated by correlatePCs
рс	An integer number, corresponding to the principal component of interest
logp	Logical, defaults to TRUE, displays the -log10 of the pvalue instead of the p value itself

Value

A base plot object

Examples

```
library(DESeq2)
dds <- makeExampleDESeqDataSet_multifac(betaSD_condition = 3, betaSD_tissue = 1)
rlt <- rlogTransformation(dds)
pcaobj <- prcomp(t(assay(rlt)))
res <- correlatePCs(pcaobj, colData(dds))
plotPCcorrs(res)</pre>
```

topGOtable

Extract functional terms enriched in the DE genes, based on topGO

Description

A wrapper for extracting functional GO terms enriched in the DE genes, based on the algorithm and the implementation in the topGO package

```
topGOtable(
 DEgenes,
 BGgenes,
 ontology = "BP",
  annot = annFUN.org,
 mapping = "org.Mm.eg.db",
 geneID = "symbol",
  topTablerows = 200,
  fullNamesInRows = TRUE,
  addGeneToTerms = TRUE,
  plotGraph = FALSE,
 plotNodes = 10,
 writeOutput = FALSE,
 outputFile = "",
topGO_method2 = "elim",
  do_padj = FALSE
)
```

DEgenes	A vector of (differentially expressed) genes
BGgenes	A vector of background genes, e.g. all (expressed) genes in the assays
ontology	Which Gene Ontology domain to analyze: BP (Biological Process), MF (Molecular Function), or CC (Cellular Component)
annot	Which function to use for annotating genes to GO terms. Defaults to annFUN.org
mapping	Which org.XX.eg.db to use for annotation - select according to the species
geneID	Which format the genes are provided. Defaults to symbol, could also be entrez or ENSEMBL
topTablerows	How many rows to report before any filtering
fullNamesInRows	
	Logical, whether to display or not the full names for the GO terms
addGeneToTerms	Logical, whether to add a column with all genes annotated to each GO term
plotGraph	Logical, if TRUE additionally plots a graph on the identified GO terms
plotNodes	Number of nodes to plot
writeOutput	Logical, if TRUE additionally writes out the result to a file
outputFile	Name of the file the result should be written into
topGO_method2	Character, specifying which of the methods implemented by topGO should be used, in addition to the classic algorithm. Defaults to elim
do_padj	Logical, whether to perform the adjustment on the p-values from the specific topGO method, based on the FDR correction. Defaults to FALSE, since the assumption of independent hypotheses is somewhat violated by the intrinsic DAG-structure of the Gene Ontology Terms

Details

Allowed values assumed by the topGO_method2 parameter are one of the following: elim, weight, weight01, lea, parentchild. For more details on this, please refer to the original documentation of the topGO package itself

Value

A table containing the computed GO Terms and related enrichment scores

```
library("airway")
library("DESeq2")
data("airway", package = "airway")
airway
dds_airway <- DESeqDataSet(airway, design= ~ cell + dex)
# Example, performing extraction of enriched functional categories in
# detected significantly expressed genes
## Not run:
dds_airway <- DESeq(dds_airway)</pre>
```

```
res_airway <- results(dds_airway)</pre>
library("AnnotationDbi")
library("org.Hs.eg.db")
res_airway$symbol <- mapIds(org.Hs.eg.db,</pre>
                              keys = row.names(res_airway),
                              column = "SYMBOL",
                              keytype = "ENSEMBL",
                              multiVals = "first")
res_airway$entrez <- mapIds(org.Hs.eg.db,</pre>
                              keys = row.names(res_airway),
                              column = "ENTREZID",
                              keytype = "ENSEMBL",
                              multiVals = "first")
resOrdered <- as.data.frame(res_airway[order(res_airway$padj),])</pre>
de_df <- resOrdered[resOrdered$padj < .05 & !is.na(resOrdered$padj),]</pre>
de_symbols <- de_df$symbol</pre>
bg_ids <- rownames(dds_airway)[rowSums(counts(dds_airway)) > 0]
bg_symbols <- mapIds(org.Hs.eg.db,</pre>
                      keys = bg_ids,
                      column = "SYMBOL",
                      keytype = "ENSEMBL",
                      multiVals = "first")
library(topGO)
topgoDE_airway <- topGOtable(de_symbols, bg_symbols,</pre>
                               ontology = "BP",
                               mapping = "org.Hs.eg.db",
                               geneID = "symbol")
```

End(Not run)

Index

```
AnnotationDbi::mapIds(),9
                                                topGOtable, 21
                                                topGOtable(), 3
biomaRt::getBM(), 8
correlatePCs, 2, 21
deprecated, 3
DESeq2::DESeqDataSet(), 5, 8-10, 12, 16
DESeq2::DESeqTransform(), 4-6, 11, 14, 16,
        18, 19
DESeq2::makeExampleDESeqDataSet(), 12
DESeq2::rlog(), 6, 11, 14, 18, 19
DESeq2::varianceStabilizingTransformation(),
        6, 11, 14, 18, 19
DESeq2::vst(), 18
distro_expr, 4
geneprofiler, 4
genespca, 5
get_annotation, 8
get_annotation_orgdb, 8
hi_loadings, 9
limmaquickpca2go, 10
makeExampleDESeqDataSet_multifac, 11
mosdef::run_topGO(), 3
pair_corr, 13
pca2go, 13
pca2go(), 16
pcaExplorer, 15
pcaExplorer(), 11, 14
pcaExplorer-package (pcaExplorer-pkg),
        17
pcaExplorer-pkg, 17
pcaplot, 17
pcaplot3d, 18
pcascree, 20
plotPCcorrs, 20
```