Package ‘epiregulon’

July 9, 2025

Title Gene regulatory network inference from single cell epigenomic
data

Version 1.4.0
Date 2025-03-03

Description Gene regulatory networks model the underlying gene regulation hierar-
chies that drive gene expression and observed phenotypes. Epiregulon infers TF activity in sin-
gle cells by constructing a gene regulatory network (regulons). This is achieved through integra-
tion of scATAC-seq and scRNA-seq data and incorporation of public bulk TF ChIP-
seq data. Links between regulatory elements and their target genes are established by comput-
ing correlations between chromatin accessibility and gene expressions.

License MIT + file LICENSE
Encoding UTF-8

Roxygen list(markdown = TRUE)
RoxygenNote 7.3.2

Imports AnnotationHub, BiocParallel, ExperimentHub, Matrix, Rcpp,
S4Vectors, SummarizedExperiment, bluster, checkmate, entropy,
lifecycle, methods, scran, scuttle, stats, utils, scMultiome,
GenomelnfoDb, GenomicRanges, AUCell,
BSgenome.Hsapiens.UCSC.hg19, BSgenome.Hsapiens.UCSC.hg38,
BSgenome.Mmusculus.UCSC.mm 10, motifmatchr, IRanges, beachmat

Depends R (>=4.4), SingleCellExperiment

Suggests knitr, rmarkdown, parallel, BiocStyle, testthat (>= 3.0.0),
coin, scater, beachmat.hdf5

LinkingTo Rcpp, beachmat, assorthead
VignetteBuilder knitr

URL https://github.com/xiaosaiyao/epiregulon/

biocViews SingleCell, GeneRegulation,NetworkInference,Network,
GeneExpression, Transcription, GeneTarget

Config/testthat/edition 3

BugReports https://github.com/xiaosaiyao/epiregulon/issues

1

https://github.com/xiaosaiyao/epiregulon/
https://github.com/xiaosaiyao/epiregulon/issues

2 epiregulon-package

git_url https://git.bioconductor.org/packages/epiregulon
git_branch RELEASE_3_21

git_last commit 48ac888

git_last_commit_date 2025-04-15

Repository Bioconductor 3.21

Date/Publication 2025-07-09

Author Xiaosai Yao [aut, cre] (ORCID: <https://orcid.org/0000-0001-9729-0726>),
Tomasz Wtodarczyk [aut] (ORCID:
<https://orcid.org/0000-0003-1554-9699>),
Aaron Lun [aut],
Shang-Yang Chen [aut]

Maintainer Xiaosai Yao <xiaosai.yao@gmail.com>

Contents

epiregulon-package L e

addLogFC e
addMotifScore L
addTFMotifInfo
addWeights e e e e 7
aggregateAcrossCells 10
aggregateAcrossCellsFast L 11
calculate Activity L L e 12
calculateP2G 15
getRegulon L e 17
getTEMotifInfo 18
pruneRegulon 20

Index 23

epiregulon-package epiregulon: Gene regulatory network inference from single cell epige-
nomic data
Description

Gene regulatory networks model the underlying gene regulation hierarchies that drive gene expres-
sion and observed phenotypes. Epiregulon infers TF activity in single cells by constructing a gene
regulatory network (regulons). This is achieved through integration of scATAC-seq and scRNA-seq
data and incorporation of public bulk TF ChIP-seq data. Links between regulatory elements and
their target genes are established by computing correlations between chromatin accessibility and
gene expressions.

https://orcid.org/0000-0001-9729-0726
https://orcid.org/0000-0003-1554-9699

addLogFC 3

Author(s)

Maintainer: Xiaosai Yao <xiaosai.yao@gmail.com> (ORCID)

Authors:

» Tomasz Wtodarczyk <tomwlo@gmail.com> (ORCID)
e Aaron Lun <infinite.monkeys.with.keyboards@gmail.com>

* Shang-Yang Chen <sychen9584@gmail.com>

See Also
Useful links:

e https://github.com/xiaosaiyao/epiregulon/

* Report bugs at https://github.com/xiaosaiyao/epiregulon/issues

addLogFC Add log fold changes of gene expression to regulons

Description

Add log fold changes of gene expression to regulons

Usage

addLogFC(
expMatrix,
clusters,
regulon,
pval.type = c("any”, "some"”, "all"),
sig_type = c("FDR", "p.value"),
logFC_condition = NULL,
logFC_ref = NULL,

Arguments

expMatrix A SingleCellExperiment object or matrix containing gene expression with genes
in the rows and cells in the columns

clusters A character or integer vector of cluster or group labels for single cells

regulon A dataframe informing the gene regulatory relationship with the tf column rep-
resenting transcription factors, idxATAC corresponding to the index in the peak-
Matrix and target column representing target genes

pval.type String specifying how p-values are to be combined across pairwise comparisons

for a given group/cluster.

https://orcid.org/0000-0001-9729-0726
https://orcid.org/0000-0003-1554-9699
https://github.com/xiaosaiyao/epiregulon/
https://github.com/xiaosaiyao/epiregulon/issues

4 addMotifScore

sig_type String specifying whether to use "FDR" or "p.value" for sig_cutoff

logFC_condition

A scalar or vector of string indicating the sample names to be compared against
logFC_ref

logFC_ref A scalar indicating the reference sample used to compute logFC. Default value
is rest which is an average of all pairwise comparisons. Users can also specify
a reference sample, for example, DMSO.

additional parameters for scran::findMarkers

Value

A DataFrame of regulons with additional columns of logFC and significance

Author(s)

Xiaosai Yao

Examples

create a mock singleCellExperiment object for gene expMatrixession matrix
set.seed(1000)

gene_sce <- scuttle::mockSCE()

gene_sce <- scuttle::logNormCounts(gene_sce)

rownames (gene_sce) <- pasted('Gene_',1:2000)

create a mock regulon
regulon <- data.frame(tf = c(rep('Gene_1',10), rep('Gene_2',10)),
idxATAC = sample(1:100, 20),
target = c(paste@('Gene_"', sample(3:2000,10)),
paste@('Gene_',sample(3:2000,10))))

filter regulon

pruned.regulon <- addLogFC(expMatrix = gene_sce, clusters = gene_sce$Treatment,
regulon = regulon,
sig_type = "p.value")

addMotifScore Add Motif Scores

Description

Add Motif Scores

addTFMotifInfo 5

Usage

addMotifScore(
regulon,
field_name = "motif",
peaks = NULL,
pwms = NULL,
species = c("human”, "mouse"),
genome = c("hg38"”, "hgl19”, "mm10"),

)
Arguments
regulon A DataFrame consisting of tf (regulator) and target in the column names.
field_name Character string indicating the column name of the regulon to add the motif
information to
peaks A GRanges object indicating the peaks to perform motif annotation on if ArchR
project is not provided. The peak indices should match the re column in the
regulon
pwms A PWMatrixList for annotation of motifs using *motifmatchr::matchMotifs’
species Character string indicating species. Currently supported species is human or
mouse
genome Character string indicating the genomic build
Additional arguments to pass into motifmatchr::matchMotifs
Value

A DataFrame with motif matches added with 1s indicating the presence of motifs and Os indicating
the absence of motifs

Examples

regulon <- S4Vectors::DataFrame(tf = c('AR','AR',"AR"','ESR1',"ESR1', 'NKX2-1"),

idxATAC = 1:6)

peaks <- GenomicRanges: :GRanges(seqgnames = c('chr12','chr19', 'chr19', 'chr11','chré', 'chri'),
ranges = IRanges: :IRanges(start = c(124914563,50850845, 50850844, 101034172, 151616327, 1000),
end = ¢(124914662,50850929, 50850929, 101034277, 151616394,2000)))

regulon <- addMotifScore(regulon, peaks=peaks)

addTFMotifInfo Add TF binding motif occupancy information to the peak2gene object

Description

Add TF binding motif occupancy information to the peak2gene object

6 addTFMotifInfo

Usage
addTFMotifInfo(p2g, grl, peakMatrix = NULL)

Arguments
p2g A Peak2Gene dataframe created by ArchR or getP2Glinks() function
grl GRangeList object containing reference TF binding information. We recom-
mend retrieving grl from getTFMotifInfo which contains TF occupancy data
derived from public and ENCODE ChIP-seq peaks. Alternatively, if the users
would like to provide a GRangeList of motif annotations. This can be derived
using motifmatchr: :matchMotifs. See details
peakMatrix A matrix of scATAC-seq peak regions with peak ids as rows
Details

This function annotates each regulatory element with possible transcription factors. We can either
provide a GRangeList of known ChIP-seq binding sites (TF occupancy) or positions of TF motifs
(TF motifs). While public ChIP-seq data may not fully align with the ground truth TF occupancy
in users’ data (due to technical challenges of ChIP-seq or cell type nature of TF occupancy), it does
offer a few important advantages over TF motif information:

1. TF occupancy allows co-activators to be included. Co-activators are chromatin modifiers that
do not directly bind to DNA but nonetheless play an important role in gene regulation

2. TF occupancy can distinguish between members of the same class that may share similar
motifs but that may have drastically different binding sites

If multiple ChIP-seq are available for the same TF, we merge the ChIP-seq data to represent an uni-
versal set of possible binding sites. The predicted TF occupancy is further refined by pruneRegulon.

If the users prefer to use TF motifs instead of TF occupancy, the users can create a GRangeList of
motif annotation using motifmatchr: :matchMotifs. Here, we demonstrate how to annotate peaks
with cisbp motif database

library(motifmatchr)
library(chromVARmotifs)
data("human_pwms_v1")
peaks <- GRanges(segnames = c("chr1”,"chr2","chr2"),
ranges = IRanges(start = c(76585873,42772928, 100183786),
width = 500))
eh <- AnnotationHub: :query(ExperimentHub: :ExperimentHub(),
pattern = c("scMultiome”, "TF motifs”, "human"))
pwms <- readRDS(eh[[eh$ah_id]]1))
grl <- matchMotifs(pwms, peaks, genome = "hg38", out = "positions”)
retain only TF symbols. TF symbols need to be consistent with gene names in regulon
names(grl) <- sapply(strsplit(names(grl), "_"), "[",3)

Value

A data frame containing overlapping ids of scATAC-seq peak regions and reference TF binding
regions

addWeights 7

Author(s)

Xiaosai Yao, Shang-yang Chen

Examples

set.seed(1)

create a mock peak-to-gene matrix

p2g <- data.frame(idxATAC = c(rep(1,5), rep(2,5)), Chrom = 'chr1', idxRNA = 1:10,
Gene = paste@('Gene_',1:10),Correlation = runif(10, 0,1))

create mock a GRanges list of TF binding sites

grl <- GRangesList('TF1' = GRanges(segnames = 'chrl',
ranges = IRanges(start = c(50,1050), width = 100)),
'TF2' = GRanges(segnames = 'chrl',

ranges = IRanges(start = c(1050), width = 100))

)

create a mock singleCellExperiment object for peak matrix
peak_gr <- GRanges(segnames = 'chril',
ranges = IRanges(start = seq(from = 1, to = 10000, by = 1000),
width = 100))
peak_counts <- matrix(sample(x = 0:4, size = 100*length(peak_gr), replace = TRUE),
nrow = length(peak_gr), ncol = 100)
peak_sce <- SingleCellExperiment(list(counts = peak_counts))
rowRanges(peak_sce) <- peak_gr
rownames (peak_sce) <- paste@('peak',1:10)

create overlaps between p2g matrix, TF binding sites and peak matrix
overlap <- addTFMotifInfo(p2g, grl, peakMatrix = peak_sce)
utils: :head(overlap)

addWeights Calculate weights for the regulons by computing co-association be-
tween TF and target gene expression

Description

Calculate weights for the regulons by computing co-association between TF and target gene expres-
sion

Usage

addWeights(
regulon,
expMatrix = NULL,
peakMatrix = NULL,
exp_assay = "logcounts”,
peak_assay = "PeakMatrix",
method = c("wilcoxon"”, "corr", "MI"),

clusters = NULL,

exp_cutoff = 1,

peak_cutoff = 0,

block_factor = NULL,
min_targets = 10,

tf_re.merge = FALSE,
aggregateCells = FALSE,
useDim = "IterativelLSI_ATAC",
cellNum = 10,

addWeights

BPPARAM = BiocParallel::SerialParam(progressbar = TRUE)

Arguments

regulon
expMatrix

peakMatrix

exp_assay

peak_assay

method

clusters

exp_cutoff

peak_cutoff

block_factor

min_targets

tf_re.merge

aggregateCells

A DataFrame object consisting of tf (regulator) and target in the column names.
A SingleCellExperiment object containing gene expression information

A SingleCellExperiment object or matrix containing peak accessibility with
peaks in the rows and cells in the columns

String specifying the name of the assay to be retrieved from the SingleCellEx-
periment object

String indicating the name of the assay in peakMatrix for chromatin accessibility

String specifying the method of weights calculation. Four options are available:
corr,MI, Imfit,wilcoxon and logFC.

A vector corresponding to the cluster labels of the cells

A scalar indicating the minimum gene expression for transcription factor above
which cell is considered as having expressed transcription factor.

A scalar indicating the minimum peak accessibility above which peak is consid-
ered open.

String specifying the field in the colData of the SingleCellExperiment object to
be used as blocking factor (such as batch)

Integer specifying the minimum number of targets for each tf in the regulon with
10 targets as the default

A logical to indicate whether to consider both TF expression and chromatin
accessibility. See details.

A logical to indicate whether to aggregate cells into groups determined by cell-
Num. This option can be used to overcome data sparsity when using wilcoxon.

String indicating the name of the dimensionality reduction matrix in expMatrix

An integer specifying the number of cells per cluster for cell aggregation. De-

useDim

used for cell aggregation
cellNum

fault is 10.
BPPARAM

A BiocParalle]Param object specifying whether summation should be paral-
lelized. Use BiocParallel::SerialParam() for serial evaluation and use BiocPar-
allel::MulticoreParam() for parallel evaluation

addWeights 9

Details

This function estimates the regulatory potential of transcription factor on its target genes, or in other
words, the magnitude of gene expression changes induced by transcription factor activity, using one
of the four methods:

* corr - correlation between TF and target gene expression
* MI - mutual information between the TF and target gene expression

* wilcoxon - effect size of the Wilcoxon test between target gene expression in cells jointly
expressing all 3 elements vs cells that do not

Two measures (corr and wilcoxon) give both the magnitude and directionality of changes whereas
MI always outputs positive weights. The correlation and mutual information statistics are com-
puted on the pseudobulked gene expression or accessibility matrices, whereas the Wilcoxon method
groups cells based on the joint expression of TF, RE and TG in each single cell.

When using the corr method, the default practice is to compute weights by correlating the pseu-
dobulk target gene expression vs the pseudobulk TF gene expression. However, often times, an
inhibitor of TF does not alter the gene expression of the TF. In rare cases, cells may even com-
pensate by increasing the expression of the TF. In this case, the activity of the TF, if computed by
TF-TG correlation, may show a spurious increase in its activity. As an alternative to gene expres-
sion, we may correlate the product of TF and RE against TG. When tf_re.merge is TRUE, we take
the product of the gene expression and chromatin accessibility.

Value

A DataFrame with columns of corr and/or MI added to the regulon. TFs not found in the expression
matrix and regulons not meeting the minimal number of targets were filtered out.

Author(s)

Xiaosai Yao, Shang-yang Chen, Tomasz Wlodarczyk

Examples

create a mock singleCellExperiment object for gene expression matrix
expMatrix <- scuttle::mockSCE()

expMatrix <- scuttle::logNormCounts(expMatrix)

expMatrix$cluster <- sample(LETTERS[1:5], ncol(expMatrix), replace=TRUE)

create a mock singleCellExperiment object for peak matrix
peakMatrix <- scuttle::mockSCE()
rownames (peakMatrix) <- 1:2000

create a mock regulon

regulon <- S4Vectors::DataFrame(tf=c(rep('Gene_0001',5), rep('Gene_0002',10)),
1dxATAC=1:15,
target=c(paste@('Gene_000',2:6), pasted('Gene_00',11:20)))

add weights to regulon
regulon.w <- addWeights(regulon=regulon, expMatrix=expMatrix, exp_assay='logcounts',
peakMatrix=peakMatrix, peak_assay='counts', clusters=expMatrix$cluster,

10 aggregateAcrossCells

min_targets=5, method='wilcox")

add weights with cell aggregation

expMatrix <- scater::runPCA(expMatrix)

regulon.w <- addWeights(regulon=regulon, expMatrix=expMatrix, exp_assay='logcounts',
peakMatrix=peakMatrix, peak_assay='counts', clusters=expMatrix$cluster,
min_targets=5, method='wilcox', aggregateCells=TRUE, cellNum=3, useDim = 'PCA')

aggregateAcrossCells Aggregate expression across cells

Description

Aggregate expression values across cells based on one or more grouping factors. This is primarily
used to create pseudo-bulk profiles for each cluster/sample combination.

Usage

aggregateAcrossCells(x, factors, num.threads = 1)

Arguments
X Any matrix-like object. Expression values are typically expected to be counts.
factors A list or data frame containing one or more grouping factors. Each entry should
be a factor of the same length as the number of cells in x.
num. threads Integer specifying the number of threads to be used for aggregation.
Value

A list containing:

* sums, a numeric matrix where each row corresponds to a gene and each column corresponds to
a unique combination of grouping levels. Each entry contains the summed expression across
all cells with that combination.

* detected, an integer matrix where each row corresponds to a gene and each column corre-
sponds to a unique combination of grouping levels. Each entry contains the number of cells
with detected expression in that combination.

* combinations, a data frame describing the levels for each unique combination. Rows of this
data frame correspond to columns of sums and detected, while columns correspond to the
factors in factors.

* counts, the number of cells associated with each combination. Each entry corresponds to a
row of combinations.

* index, an integer vector of length equal to the number of cells in x. This specifies the combi-
nation in combinations to which each cell was assigned.

aggregateAcrossCellsFast 11

Author(s)

Aaron Lun

Examples

Mocking a matrix:
library(Matrix)
y <- round(abs(rsparsematrix(1000, 100, 0.1) * 100))

Simple aggregation:

clusters <- sample(LETTERS, 100, replace=TRUE)

agg <- aggregateAcrossCells(y, list(cluster=clusters))
str(agg)

Multi-factor aggregation

samples <- sample(1:5, 100, replace=TRUE)

agg2 <- aggregateAcrossCells(y, list(cluster=clusters, sample=samples))
str(agg2)

aggregateAcrossCellsFast
Aggregate cells in SingleCellExperiment

Description

Aggregate expression values across cells in SingleCellExperiment based on a grouping factor. This
is primarily used to create pseudo-bulk profiles for each cluster/sample combination. It is wrapped
around aggregateAcrossCells, which relies on the C++ code.

Usage
aggregateAcrossCellsFast(
sce,
clusters,
assay.name = "counts”,
fun_name = c("mean”, "sum"),

num. threads = 1,
aggregateColData = TRUE

)
Arguments
sce A SingleCellExperiment, SummarizedExperiment or RangedSummarizedExper-
iment object
clusters A vector used as a grouping variable. The length should be equal to the number

of cells.

12 calculateActivity

assay.name A character indicating the name of the assay containing the values to be aggre-
gated.
fun_name A character indicating the function used to aggregate data. The selection is

restricted to "mean" or "sum".

num. threads Integer specifying the number of threads to be used for aggregation.

aggregateColData
A logical specifying if the columns in the colData should be included in the
output object. Only those columns are selected which can be decomposed by
grouping variable into the vectors whose all elements are the same.

Value

A SingleCellExperiment object containing aggregated cells.

Examples

create a mock singleCellExperiment object for gene expression matrix
set.seed(1000)

example_sce <- scuttle::mockSCE()

ids <- sample(LETTERS[1:5], ncol(example_sce), replace=TRUE)

out <- aggregateAcrossCellsFast(example_sce, ids)

calculateActivity Calculate the per cell activity of master regulators based on a regulon

Description

Calculate the per cell activity of master regulators based on a regulon

Usage
calculateActivity(
expMatrix = NULL,
exp_assay = "logcounts”,

regulon = NULL,

normalize = FALSE,

mode = "weight”,

method = c("weightedmean”, "aucell"),
genesets = NULL,

clusters = NULL,

FUN = c("mean”, "sum"),

ncore = 1,

BPPARAM = BiocParallel::SerialParam()

calculateActivity

Arguments

expMatrix

exp_assay

regulon

normalize

mode

method

genesets

clusters
FUN
ncore

BPPARAM

Details

13

A SingleCellExperiment object containing gene expression information with
rows representing genes and columns represent cells. Rownames (either gene
symbols or genelD) must be consistent with the naming convention in the regu-
lon.

String specifying the name of the assay to be retrieved from the SingleCellEx-
periment object. Set to "logcounts’ as the default

A DataFrame object consisting of tf (regulator) and target in the column names,
with additional columns indicating degree of association between tf and target
such as *mor’ or ’corr’ obtained from addWeights.

Logical indicating whether row means should be subtracted from expression
matrix. default is FALSE

String indicating the name of column to be used as the weights

String indicating the method for calculating activity. Available methods are
weightedMean or aucell

A list of genesets. Each list element can be a dataframe with the first column
indicating the genes and second column indicating the weights. Alternatively,
each list element is a character vector corresponding to the genes in the gene-
set. A feature set collection in the form of CompressedSplitDataFrameList that
contains genes in the first column and weights in the second column. See details

A vector indicating cluster assignment
function to aggregate the weights
Integer specifying the number of cores to be used in AUCell

A BiocParalle]Param object specifying whether summation should be paral-
lelized. Use BiocParallel::SerialParam() for serial evaluation and use BiocPar-
allel::MulticoreParam() for parallel evaluation

This function calculates activity score from a regulon that is a DataFrame consisting of a tf column,
a target column and a weight column. Alternatively, instead of a regulon, this function also accepts
weighted signature sets where each gene set or signature is a data frame or unweighted signature
sets where each gene set is a character vector. The user has the option of computing signature score
by weighted mean of target gene expression or the relative ranking of the target genes computed by

AUCell.

Value

A matrix of inferred transcription factor (row) activities in single cells (columns)

Author(s)

Xiaosai Yao, Shang-yang Chen

14 calculateActivity

Examples

create a mock singleCellExperiment object for gene expMatrixession matrix
set.seed(1000)

gene_sce <- scuttle::mockSCE()

gene_sce <- scuttle::logNormCounts(gene_sce)

rownames (gene_sce) <- pasted('Gene_',1:2000)

create a mock singleCellExperiment object for peak matrix
peak_gr <- GRanges(seqnames = 'chril',
ranges = IRanges(start = seq(from = 1, to = 10000, by = 100), width = 100))
peak_counts <- matrix(sample(x = @:4, size = ncol(gene_sce)*length(peak_gr), replace = TRUE),
nrow = length(peak_gr), ncol=ncol(gene_sce))
peak_sce <- SingleCellExperiment(list(counts = peak_counts), colData = colData(gene_sce))
rownames (peak_sce) <- paste@('Peak_',1:100)

create a mock regulon

regulon <- data.frame(tf = c(rep('Gene_1',10), rep('Gene_2',10)),
idxATAC = sample(1:100, 20),
target = c(paste@('Gene_', sample(3:2000,10)),

-

pasted('Gene_"',sample(3:2000,10))))

prune regulon
pruned.regulon <- pruneRegulon(expMatrix = gene_sce,

exp_assay = 'logcounts',
peakMatrix = peak_sce,
peak_assay = 'counts',

regulon = regulon,

clusters = gene_sce$Treatment,
regulon_cutoff = 0.5,

p_adj = TRUE)

regulon.w <- addWeights(regulon = regulon,
expMatrix = gene_sce,
clusters = gene_sce$Treatment,

exp_assay = 'logcounts’,
min_targets = 5,
method = 'corr')

calculate activity

activity <- calculateActivity(expMatrix = gene_sce,
regulon = regulon.w,
exp_assay = 'logcounts')

calculate cluster-specific activity if cluster-specific weights are supplied
regulon.w$weight <- matrix(runif(nrow(regulon.w)*2, -1,1), nrow(regulon.w),?2)
colnames(regulon.w$weight) <- c('treatl’', 'treat2')

activity.cluster <- calculateActivity(gene_sce,
regulon = regulon.w, clusters = gene_sce$Treatment,

exp_assay = 'logcounts', FUN = 'mean')

compute signature scores from weighted genesets

calculateP2G 15

weighted_genesets <- list(setl = data.frame(genes = c('Gene_1', 'Gene_2', 'Gene_3'),
weights = c(1,2,3)), set2 = data.frame(genes = c('Gene_4', 'Gene_5', 'Gene_6'), weights = c(4,5,6)))

activity <- calculateActivity(gene_sce, genesets = weighted_genesets)

compute signature scores from unweighted genesets

unweighted_genesets <- list(setl = c('Gene_1', 'Gene_2', 'Gene_3'),
set2 = c('Gene_4', 'Gene_5', 'Gene_6"))

activity <- calculateActivity(gene_sce, genesets = unweighted_genesets)

calculateP2G Establish peak to gene links based on correlations between ATAC-seq
peaks and RNA-seq genes

Description

Establish peak to gene links based on correlations between ATAC-seq peaks and RNA-seq genes

Usage

calculateP2G(

peakMatrix = NULL,
expMatrix = NULL,
reducedDim = NULL,
useDim = "IterativelSI",
maxDist = 250000,
cor_cutoff = 0.5,
cellNum = 100,

exp_assay = "logcounts”,

peak_assay = "counts”,

gene_symbol = "name",

clusters = NULL,

cor_method = c("pearson”, "kendall"”, "spearman"),
assignment_method = c("correlation”, "nearest”),
frac_RNA = 0,

frac_ATAC = 0,
BPPARAM = BiocParallel::SerialParam()

)
Arguments
peakMatrix A SingleCellExperiment object containing counts of chromatin accessibility at
each peak region or genomic bin from scATAC-seq. rowRanges should contain
genomic positions of the peaks in the form of GRanges.
expMatrix A SingleCellExperiment object containing gene expression counts from scRNA-

seq. rowRanges should contain genomic positions of the genes in the form of
GRanges. rowData should contain a column of gene symbols with column name
matching the gene_symbol argument.

16

reducedDim
useDim

maxDist

cor_cutoff

cellNum
exp_assay
peak_assay

gene_symbol

clusters

cor_method

calculateP2G

A matrix of dimension reduced values
String specifying the name of the reduced dimension matrix supplied by the user

An integer to specify the base pair extension from transcription start start for
overlap with peak regions

A numeric scalar to specify the correlation cutoff between ATAC-seq peaks and
RNA-seq genes to assign peak to gene links. Default correlation cutoff is 0.5.

An integer to specify the number of cells to include in each K-means cluster
String indicating the name of the assay in expMatrix for gene expression
String indicating the name of the assay in peakMatrix for chromatin accessibility

String indicating the column name in the rowData of expMatrix that corresponds
to gene symbol

A vector corresponding to the cluster labels for calculation of correlations within
each cluster. If left NULL, correlation is calculated across all clusters. See
details for the use of clusters

String indicating which correlation coefficient is to be computed. One of "pear-
son’ (default), "kendall’, or ’spearman’.

assignment_method

frac_RNA

frac_ATAC

BPPARAM

Details

String indicating the method used to assign target genes to regulatory elements.
"Correlation’ is based on correlation between ATAC and RNA above a correla-
tion threshold set by cor_cutoff. *Nearest’ assigns the closest expressed gene
to regulatory element meeting a correlation threshold set by cor_cutoff. Set
cor_cutoff to 0 if wishing to assign the closest expressed gene without any cor-
relation cutoff

An integer to indicate the fraction of cells expressing a gene. It is used to filter
the gene expression matrix for expressed genes

An integer to indication the fraction of cells showing chromatin accessibility. It
is used to filter the peak Matrix for open regions

A BiocParallelParam object specifying whether summation should be paral-
lelized. Use BiocParallel::SerialParam() for serial evaluation and use BiocPar-
allel::MulticoreParam() for parallel evaluation

Cluster information is sometimes helpful to avoid the Simpsons’s paradox in which baseline dif-
ferences between cell lines or cell types can create artificial or even inverse correlations between
peak accessibility and gene expression. If Cluster information is provided, correlation is performed
within cell aggregates of each cluster.

Value

A DataFrame of Peak to Gene correlation

Author(s)

Xiaosai Yao, Shang-yang Chen

https://en.wikipedia.org/wiki/Simpson%27s_paradox

getRegulon 17

Examples

create a mock singleCellExperiment object for gene expression matrix

set.seed(1000)

gene_sce <- scuttle::mockSCE()

gene_sce <- scuttle::logNormCounts(gene_sce)

gene_gr <- GRanges(segnames = Rle(c('chr1', 'chr2', 'chr3','chr4'), nrow(gene_sce)/4),
ranges = IRanges(start = seq(from = 1, length.out=nrow(gene_sce), by = 1000),

width = 100))

rownames (gene_sce) <- rownames(gene_sce)

gene_gr$name <- rownames(gene_sce)

rowRanges(gene_sce) <- gene_gr

create a mock singleCellExperiment object for peak matrix
peak_gr <- GRanges(segnames = 'chril',

ranges = IRanges(start = seq(from = 1, to = 10000, by = 1000), width = 100))
peak_counts <- matrix(sample(x = 0:4, size = ncol(gene_sce)*length(peak_gr), replace = TRUE),

nrow = length(peak_gr), ncol=ncol(gene_sce))
peak_sce <- SingleCellExperiment(list(counts = peak_counts), colData = colData(gene_sce))
rowRanges(peak_sce) <- peak_gr
rownames (peak_sce) <- paste@('peak',1:10)
create a mock reducedDim matrix
reducedDim_mat <- matrix(runif(ncol(gene_sce)*50, min = @, max = 1), nrow = ncol(gene_sce), 50)
p2g <- calculateP2G(peakMatrix = peak_sce, expMatrix = gene_sce, reducedDim = reducedDim_mat,
cellNum = 20, clusters = gene_sce$Treatment)

getRegulon Combine the TF binding info and peak to gene correlations to generate
regulons

Description

Combine the TF binding info and peak to gene correlations to generate regulons

Usage

getRegulon(p2g, overlap, aggregate = FALSE, FUN = "mean")

Arguments
p2g A Peak2Gene data frame created by ArchR or getP2Glinks() function
overlap A data frame storing overlaps between the regions of the peak matrix with the
bulk TF ChIP-seq binding sites computed from addTFMotifInfo
aggregate logical to specify whether regulatory elements are aggregated across the same

TF-target pairs

FUN function to aggregate TF-target sharing different regulatory elements

18 getTFMotifInfo

Value

A DataFrame consisting of tf(regulator), target and a column indicating degree of association be-
tween TF and target such as mor’ or ’corr’.

Author(s)

Xiaosai Yao, Shang-yang Chen

Examples

set.seed(1)

create a mock peak-to-gene matrix

p2g <- data.frame(idxATAC = c(rep(1,5), rep(2,5)), Chrom = 'chr1', idxRNA = 1:10,
target = paste@('Gene_', 1:10), Correlation = runif(10, @, 1))

create a Granges list of TF binding sites

grl <- GRangesList('TF1' = GRanges(segnames = 'chrl',
ranges = IRanges(start = c(50,1050), width = 100)),
'TF2' = GRanges(segnames = 'chril1',

ranges = IRanges(start = c(1050), width = 100))

)

Create a mock peak matrix
peak_gr <- GRanges(segnames = 'chrl1',
ranges = IRanges(start = seq(from = 1, to = 10000, by = 1000), width = 100))

peak_counts <- matrix(sample(x = 0:4, size = 100*length(peak_gr), replace = TRUE),
nrow = length(peak_gr),ncol = 100)

peak_sce <- SingleCellExperiment(list(counts = peak_counts))

rowRanges(peak_sce) <- peak_gr

rownames (peak_sce) <- paste@('peak', 1:10)

create overlaps between p2g matrix, TF binding sites and peak matrix
overlap <- addTFMotifInfo(p2g, grl, peakMatrix = peak_sce)
utils: :head(overlap)

aggregate gene expression if the gene is bound by the same TF at regulatory elements
regulon <- getRegulon(p2g, overlap, aggregate = FALSE)

getTFMotifInfo Retrieve TF binding sites or motif positions

Description

Combined transcription factor ChIP-seq data from ChIP-Atlas and ENCODE

getTFMotifInfo 19
Usage
getTFMotifInfo(
genome = c("hg38", "hgl19"”, "mm1Q@"),
source = c("atlas"”", "encode.sample”, "atlas.sample”, "atlas.tissue"),
metadata = FALSE,
mode = c("occupancy”, "motif"),
peaks = NULL,
version = 1,
peak_number = 1000
)
Arguments
genome character string specifying the genomic build
source character string specifying the ChIP-seq data source and data specificity. Source
followed by dot and sample indicates sample-specific Chip-seq data. Adding
.tissue to source string result in returning tissue specific data. Providing
source name without suffix tells the function to return data merged from dif-
ferent tissues and samples.
metadata logical flag specifying whether to return data or metadata only
mode a string indicating whether to download a GRangelist of TF binding sites (’oc-
cupancy’) or motif matches ("'motif’). TF binding information is retrieved from
scMultiome: :tfBinding(). The motif information was obtained from chrom-
VARmotifs (human_pwms_v2 and mouse_pwms_v2, version 0.2 with filtering
of cisBP motifs) and is also hosted on scMultiome.
peaks A GRanges object indicating the peaks to perform motif annotation on. The
peak indices should match the idxATAC column in the regulon.
version numeric indicating data version (for details see tfBinding)

peak_number

Value

numeric indicating threshold to be applied to the number of peaks per transcrip-
tion factor in the combined version of GenomicRanges (from all samples and
tissues).

A list of TF binding sites as a GrangesList object.

References

ChIP-Atlas 2021 update: a data-mining suite for exploring epigenomic landscapes by fully inte-
grating ChIP-seq, ATAC-seq and Bisulfite-seq data. Zou Z, Ohta T, Miura F, Oki S. Nucleic Acids
Research. Oxford University Press (OUP); 2022. doi:10.1093/nar/gkac199

ChIP-Atlas: a data-mining suite powered by full integration of public ChIP-seq data. Oki S, Ohta
T, Shioi G, Hatanaka H, Ogasawara O, Okuda Y, Kawaji H, Nakaki R, Sese J, Meno C. EMBO; Vol.
19, EMBO reports. 2018. doi:10.15252/embr.201846255

ENCODE: https://www.encodeproject.org/

https://github.com/GreenleafLab/chromVARmotifs
https://github.com/GreenleafLab/chromVARmotifs
http://dx.doi.org/10.1093/nar/gkac199
http://dx.doi.org/10.15252/embr.201846255

20 pruneRegulon

Examples

retrieve TF binding info

getTFMotifInfo('mm1@', 'atlas.sample')
getTFMotifInfo('hg38', 'atlas.tissue')
getTFMotifInfo('hgl9', 'atlas')

retrieve motif info

peaks <- GRanges(segnames = c('chr12','chr19','chr19','chril1', 'chr6'),

ranges = IRanges(start = c(124914563,50850845, 50850844, 101034172, 151616327),
end = c(124914662,50850929, 50850929, 101034277, 151616394)))

grl <- getTFMotifInfo(genome = 'hg38', mode = 'motif', peaks=peaks)

pruneRegulon Prune regulons for true transcription factor - regulatory elements -
target genes relationships

Description

Prune regulons for true transcription factor - regulatory elements - target genes relationships

Usage

pruneRegulon(
regulon,
expMatrix = NULL,
peakMatrix = NULL,

exp_assay = "logcounts”,
peak_assay = "PeakMatrix",
test = c("chi.sq”, "binom"),

clusters = NULL,

exp_cutoff = 1,

peak_cutoff = 0,
regulon_cutoff = 0.05,

p_adj = TRUE,

prune_value = "pval”,
aggregateCells = FALSE,
useDim = "IterativelLSI_ATAC",

cellNum = 10,
BPPARAM = BiocParallel::SerialParam(progressbar = TRUE)
)
Arguments
regulon A dataframe informing the gene regulatory relationship with the tf column rep-

resenting transcription factors, idxATAC corresponding to the index in the peak-
Matrix and target column representing target genes

pruneRegulon 21

expMatrix A SingleCellExperiment object or matrix containing gene expression with genes
in the rows and cells in the columns

peakMatrix A SingleCellExperiment object or matrix containing peak accessibility with
peaks in the rows and cells in the columns

exp_assay String indicating the name of the assay in expMatrix for gene expression

peak_assay String indicating the name of the assay in peakMatrix for chromatin accessibility

test String indicating whether binom or chi. sq test should be performed

clusters A vector corresponding to the cluster labels of the cells if cluster-specific joint
probabilities are also required. If left NULL, joint probabilities are calculated for
all cells

exp_cutoff A scalar indicating the minimum gene expression above which gene is consid-
ered active. Default value is 1. Applied to both transcription factors and target
genes.

peak_cutoff A scalar indicating the minimum peak accessibility above which peak is consid-

ered open. Default value is O

regulon_cutoff A scalar indicating the maximal value for p-value for a tf-idxATAC-target trio
to be retained in the pruned regulon.

p_adj A logical indicating whether p adjustment should be performed
prune_value String indicating whether to filter regulon based on pval or padj.

aggregateCells A logical to indicate whether to aggregate cells into groups determined by cell-
Num. Use option to overcome data sparsity if needed

useDim String indicating the name of the dimensionality reduction matrix in expMatrix
used for cell aggregation

cellNum An integer specifying the number of cells per cluster for cell aggregation. De-
fault is 10.

BPPARAM A BiocParallelParam object specifying whether calculation should be paral-

lelized. Default is set to BiocParallel::MulticoreParam()

Details

The function prunes the network by performing tests of independence on the observed number of
cells jointly expressing transcription factor (TF), regulatory element (RE) and target gene (TG) vs
the expected number of cells if TF/RE and TG are independently expressed.

In other words, if no regulatory relationship exists, the expected probability of cells expressing all
three elements is P(TF, RE) * P(TG), that is, the product of (1) proportion of cells both expressing
transcription factor and having accessible corresponding regulatory element, and (2) proportion of
cells expressing target gene. The expected number of cells expressing all three elements is therefore
n*P(TF, RE)*P(TG), where n is the total number of cells. However, if a TF-RE-TG relationship
exists, we expect the observed number of cells jointly having all three elements (TF, RE, TG) to
deviate from the expected number of cells predicted from an independent relationship.

If the user provides cluster assignment, the tests of independence are performed on a per-cluster
basis in addition to providing all cells statistics. This enables pruning by cluster, and thus yields
cluster-specific gene regulatory relationships.

We implement two tests, the binomial test and the chi-square test.

22 pruneRegulon

In the binomial test, the expected probability is P(TF, RE) * P(TG), and the number of trials is
the number of cells, and the observed successes is the number of cells jointly expressing all three
elements.

In the chi-square test, the expected probability for having all 3 elements active is also P(TF, RE)
* P(TG) and the probability otherwise is 1- P(TF, RE) * P(TG). The observed cell count for the
active category is the number of cells jointly expressing all three elements, and the cell count for
the inactive category is n - n_triple.

Value

A DataFrame of pruned regulons with p-values indicating the probability of independence either
for all cells or for individual clusters, z-score statistics for binomial tests or chi-square statistics for
chi-square test and g-adjusted values.

Author(s)

Xiaosai Yao, Tomasz Wlodarczyk

Examples

create a mock singleCellExperiment object for gene expMatrixession matrix
set.seed(1000)

gene_sce <- scuttle::mockSCE()

gene_sce <- scuttle::logNormCounts(gene_sce)

rownames(gene_sce) <- paste@('Gene_',1:2000)

create a mock singleCellExperiment object for peak matrix
peak_gr <- GRanges(segnames = 'chrl',
ranges = IRanges(start = seq(from = 1, to = 10000, by = 100), width = 100))
peak_counts <- matrix(sample(x = 0:4, size = ncol(gene_sce)xlength(peak_gr), replace = TRUE),
nrow = length(peak_gr), ncol=ncol(gene_sce))
peak_sce <- SingleCellExperiment(list(counts = peak_counts), colData = colData(gene_sce))
rownames(peak_sce) <- paste@('Peak_',1:100)

create a mock regulon
regulon <- data.frame(tf = c(rep('Gene_1',10), rep('Gene_2',10)),
idxATAC = sample(1:100, 20),
target = c(paste@('Gene_"', sample(3:2000,10)),
paste@('Gene_',sample(3:2000,10))))

prune regulon

pruned.regulon <- pruneRegulon(expMatrix = gene_sce,

exp_assay = 'logcounts', peakMatrix = peak_sce, peak_assay = 'counts',
regulon = regulon, clusters = gene_sce$Treatment, regulon_cutoff = 0.5)

add weights with cell aggregation

gene_sce <- scater::runPCA(gene_sce)

pruned.regulon <- pruneRegulon(expMatrix = gene_sce, exp_assay = 'logcounts',
peakMatrix = peak_sce, peak_assay = 'counts', regulon = regulon,

clusters = gene_sce$Treatment, regulon_cutoff = 0.5,

aggregateCells=TRUE, cellNum=3, useDim = 'PCA')

Index

* internal
epiregulon-package, 2

addLogFC, 3

addMotifScore, 4
addTFMotifInfo, 5
addWeights, 7
aggregateAcrossCells, 10
aggregateAcrossCellsFast, 11

calculateActivity, 12
calculateP2G, 15

epiregulon (epiregulon-package), 2
epiregulon-package, 2

getRegulon, 17
getTFMotifInfo, 18

pruneRegulon, 6, 20
scMultiome: :tfBinding(), 19

tfBinding, 19

23

	epiregulon-package
	addLogFC
	addMotifScore
	addTFMotifInfo
	addWeights
	aggregateAcrossCells
	aggregateAcrossCellsFast
	calculateActivity
	calculateP2G
	getRegulon
	getTFMotifInfo
	pruneRegulon
	Index

