Package ‘matter’

April 12,2022

Type Package

Title A framework for rapid prototyping with file-based data
structures

Version 1.20.0

Date 2016-10-11

Author Kylie A. Bemis <k.bemis@northeastern.edu>
Maintainer Kylie A. Bemis <k.bemis@northeastern.edu>

Description Memory-efficient reading, writing, and manipulation of
structured binary data as file-based vectors, matrices, arrays,
lists, and data frames.

License Artistic-2.0

Depends R (>= 3.5), BiocParallel, Matrix, methods, stats, biglm
Imports BiocGenerics, ProtGenerics, digest, irlba, utils
Suggests BiocStyle, testthat

Collate matterGenerics.R utils.R drle.R atoms.R matter.R matter_vec.R
matter_mat.R matter_arr.R matter_list.R matter_str.R
matter_fc.R matter_vt.R rep_vt.R sparse_mat.R virtual_mat.R
virtual_tbl.R virtual_df.R coerce.R stream_stat.R stats.R
statsget.R apply.R scale.R biglm.R prcomp.R altrep.R

biocViews Infrastructure, DataRepresentation

URL https://github.com/kuwisdelu/matter
git_url https://git.bioconductor.org/packages/matter
git_branch RELEASE_3_14

git_last_commit 60a913c

git_last_commit_date 2021-10-26
Date/Publication 2022-04-12

https://github.com/kuwisdelu/matter

2

apply

R topics documented:

apply . . e e e 2
biglm 4
bINVEC e e 5
bsearch 6
checksum L e e e e e 7
chunk_apply oL 8
COIStatS e e e e e 11
combine e e 13
COmbINET e e e e e e e e 13
delayed-ops e 14
drle-class e e e e 15
Keys . . e 17
lapply . . . e e e 17
locmax e e e e 19
matter-class L. e e e e e e 20
matter-datatypeso o . e e e e e e e e e e e 22
MALEr-OPLIONS+ v v v v v e e e e e e e e e e e e e e e e e e 23
matter_arr-class L e e e e e 23
matter_df-class e 26
matter_fc-class L e e 28
matter_list-class e e 30
matter_mat-class e e e 32
matter_str-class e e e 34
matter_vec-class e e e e e 36
PICOMP .« . v v vt et e e e e e e e e e 38
profmem e 40
rep_vt-class 41
scale e e e e 42
sparse_mat-class e 43
SIIEAM-StALS e e e e e e e e e e e e e e e 46
SITUCE . . . o . o e e 48
SUMMATY-SEALS v v v v v e 49
tOlEranCe e e e e e e e e 52
uuid ... e e 52
virtual_mat-class e e 54
Index 57
apply Apply Functions Over “matter” Matrices
Description

An implementation of apply for matter_mat, sparse_mat and virtual_mat matrices.

apply 3
Usage
S4 method for signature 'matter_mat'
apply (X, MARGIN, FUN, ..., BPPARAM = bpparam(), simplify = TRUE)
S4 method for signature 'sparse_mat'
apply (X, MARGIN, FUN, ..., BPPARAM = bpparam(), simplify = TRUE)
S4 method for signature 'virtual_mat'
apply (X, MARGIN, FUN, ..., BPPARAM = bpparam(), simplify = TRUE)
Arguments
X A matter matrix-like object.
MARGIN Must be 1 or 2 for matter_mat matrices, where ‘1’ indicates rows and ‘2’ indi-
cates columns. The dimension names can also be used if X has dimnames set.
FUN The function to be applied.
Additional arguments to be passed to FUN.
BPPARAM An optional instance of BiocParallelParam. See documentation for bplapply.
simplify Should the result be simplified?
Details

Because FUN must be executed by the interpreter in the appropriate R environment, the full row or
column will be loaded into memory. The chunksize of X is ignored. For summary statistics, func-
tions like colMeans and rowMeans offer greater control over memory pressure. When performed in
parallel, the matter metadata is serialized to each R session, so all workers must be able to access
the data via the same paths().

Value

See apply for details.

Warning

Applying a function over the rows of a column-major matrix (e.g., matter_matc) or over the
columns of a row-major matrix (e.g., matter_matr) may be very slow.

Author(s)

Kylie A. Bemis

See Also

apply

Examples

biglm

register(SerialParam())

x <- matter(1:100, nrow=10, ncol=10)

apply(x, 2, summary)

biglm

Using “biglm” with “matter”

Description

This method allows matter_mat matrices and matter_df data frames to be used with the biglm
and bigglm functions from the “biglm” package.

Usage

S4 method for signature 'formula,virtual_df'
biglm(formula, data, weights = NULL, sandwich = FALSE)

S4 method for signature 'formula,virtual_df"'
bigglm(formula, data, ..., chunksize = NULL)

S4 method for signature 'formula,matter_mat'

bigglm(formula, data, ..., chunksize = NULL, fc

NULL)

S4 method for signature 'formula,sparse_mat'

bigglm(formula, data, ..., chunksize = NULL, fc

NULL)

S4 method for signature 'formula,virtual_mat'

bigglm(formula, data, ..., chunksize = NULL, fc

Arguments

formula
data
weights

sandwich

chunksize

fc

NULL)

A model formula.
A matter matrix with column names.
A one-sided, single-term formula specifying weights.

If TRUE, compute the Huber/White sandwich covariance matrix (uses p*4 mem-
ory rather than p*2).

An integer giving the maximum number of rows to process at a time. If left
NULL, this will be calculated by dividing the chunksize of data by the number
of variables in the formula.

Either column indices or names of variables which are factors.

Additional options passed to bigglm.

binvec 5

Value

An object of class bigglm.

Author(s)
Kylie A. Bemis

See Also
bigglm

Examples
set.seed(1)
x <- matter_mat(rnorm(1000), nrow=100, ncol=10)
colnames(x) <- c(paste@("x", 1:9), "y")

fm <- paste@("y ~ ", paste@(paste@("x", 1:9), collapse=" + "))
fm <- as.formula(fm)

fit <- bigglm(fm, data=x, chunksize=50)
coef(fit)

binvec Bin a vector

Description

Bin a vector based on intervals or groups.

Usage
binvec(x, u, v, method = "sum")
Arguments
X A numeric vector.
u, v The (inclusive) lower and upper indices of the bins, or a factor providing the
groupings.
method The method used to bin the values. This is efficiently implemented for "sum",
"mean”, "min" or "max". Providing a function will use a less-efficient fallback.
Value

An vector of the summarized (binned) values.

6 bsearch

Author(s)

Kylie A. Bemis

Examples

set.seed(1)

X <- runif(20)

binvec(x, c(1,6,11,16), c(5,10,15,20), method="mean")
binvec(x, seq(from=1, to=21, by=5), method="mean")

g <- rep(c("a”,"b","c","d"), each=5)

binvec(x, g, method="mean")

bsearch Binary Search with Approximate Matching

Description

Given a set of keys and a sorted (non-decreasing) vector of values, use a binary search to find
the indexes in values that match the values of key. This implementation allows for returning the
index of the nearest match if there are no exact matches. It also allows specifying a tolerance for
comparison of doubles.

Usage

bsearch(key, values, tol = @, tol.ref = "none”,
nomatch = NA_integer_, nearest = FALSE)

Arguments

key A vector of keys to match.

values A sorted (non-decreasing) vector of values to be matched.

tol The tolerance for matching doubles. Must be >= 0.

tol.ref One of "none’, ’key’, or ’values’. If *none’, then comparison of doubles is done
by taking the absolute difference. If either "key’ or ’values’, then relative differ-
ences are used, and this specifies which to use as the reference (target) value.

nomatch The value to be returned in the case when no match is found, coerced to an

integer. (Ignored if nearest = TRUE.)

nearest Should the index of the closest match be returned if no exact matches are found?

checksum 7

Details

The algorithm is implemented in C and currently only works for ’integer’, ‘numeric’, and ’charac-
ter’ vectors. If there are multiple matches, then the first match that is found will be returned, with
no guarantees. If a nonzero tolerance is provided, the closest match will be returned.

The "nearest" match for strings when there are no exact matches is decided by the match with
the most initial matching characters. Tolerance is ignored for strings and integers. Behavior is
undefined and results may be unexpected if values includes NAs.

Value

A vector of the same length as key, giving the indexes of the matches in values.

Author(s)
Kylie A. Bemis

See Also

match, pmatch, findInterval

Examples

x <- c(1.11, 2.22, 3.33, 5.0, 5.1)

bsearch(2.22, x) # 2

bsearch(3.0, x) # NA

bsearch(3.0, x, nearest=TRUE) # 3

bsearch(3.0, x, tol=0.1, tol.ref="values") # 3

y <= c("hello”, "world!")
bsearch("world!", y) # 2
bsearch("worl”, y) # NA
bsearch("worl”, y, nearest=TRUE) # 2

checksum Calculate Checksums and Cryptographic Hashes

Description
This is a generic function for applying cryptographic hash functions and calculating checksums for
arbitrary R objects.

Usage

checksum(x, ...)

S4 method for signature 'matter’
checksum(x, algo = c("shal”, "md5"), ...)

Arguments

X

algo

Details

An object to be hashed.
The hash function to use.

Additional arguments to be passed to the hash function.

chunk_apply

The method for matter objects calculates checksums of each of the files in the object’s paths.

Value

A character vector giving the hash or hashes of the object.

Author(s)
Kylie A. Bemis

See Also

digest

Examples

x <- matter(1:10)
y <- matter(1:10)

checksum(x)

checksum(y) # should be the same

chunk_apply

Apply Functions Over Chunks of a List, Vector, or Matrix

Description

Perform equivalents of apply, lapply, and mapply, but over parallelized chunks of the data. This
is most useful if accessing the data is potentially time-consuming, such as for file-based matter
objects. Operating on chunks reduces the number of I/O operations.

Usage

chunk_apply (X, FUN, MARGIN, ..., simplify = FALSE,

chunks = NA

, view = c("element”, "chunk"),

attr = list(), alist = list(), pattern = NULL,
outfile = NULL, verbose = FALSE,
BPREDO = list(), BPPARAM = bpparam())

chunk_mapply(FUN, ..., MoreArgs = NULL, simplify = FALSE,

chunk_apply

chunks = NA, view = c("element”, "chunk"),
attr = list(), alist = list(), pattern = NULL,
outfile = NULL, verbose = FALSE,

BPREDO = list(), BPPARAM = bpparam())

Arguments

X

FUN
MARGIN

MoreArgs

simplify

chunks

view

attr

alist

pattern

outfile

verbose
BPREDO
BPPARAM

Details

A list, vector, or matrix for chunk_apply (). These may be any class that imple-
ments suitable methods for [, [[, dim, and length(). Only lists are supported
for chunk_mapply ().

The function to be applied.

If the object is matrix-like, which dimension to iterate over. Must be 1 or 2,
where 1 indicates rows and 2 indicates columns. The dimension names can also
be used if X has dimnames set.

A list of other arguments to FUN.
Additional arguments to be passed to FUN.

Should the result be simplified into a vector, matrix, or higher dimensional ar-
ray?

The number of chunks to use. If NA (the default), this is inferred from chunksize (X)
for matter objects, or from getOption(”"matter.default.chunksize") for
non-matter classes. For [O-bound operations, using fewer chunks will often be
faster, but use more memory.

What should be passed as the argment to FUN: "element" means the vector ele-
ment, row, or column are passed (same as the behavior of lapply and apply),
and "chunk" means to pass the entire chunk.

A named list of attributes that will be attached to the argument passed to FUN
as-is.

A named list of vector-like attributes that will be attached to the argument passed
to FUN, subsetted to the current elements. Typically, each attribute should be as
long as X, unless pattern is specified, in which case each attribute should be as
long as pattern.

A list of indices giving a pattern over which to apply FUN to X. Each element of
pattern should give a vector of indices which can be used subscript X. For time
and space efficiency, no attempt is made to verify these indices are valid.

If non-NULL, a file path where the results should be written as they are pro-
cessed. If specified, FUN must return a ‘raw’, ’logical’, ’integer’, or 'numeric’
vector. The result will be returned as a matter object.

Should user messages be printed with the current chunk being processed?
See documentation for bplapply.

An optional instance of BiocParallelParam. See documentation for bplapply.

When view = "element”:

10 chunk_apply

For vectors and lists, the vector is broken into some number of chunks according to chunks. The
individual elements of the chunk are then passed to FUN.

For matrices, the matrix is chunked along rows or columns, based on the number of chunks. The
individual rows or columns of the chunk are then passed to FUN.

In this way, the first argument of FUN is analogous to using the base apply and lapply functions.
However, when view = "chunk”:

In this situation, the entire chunk is passed to FUN, and FUN is responsible for knowing how to handle
a sub-vector or sub-matrix of the original object. This may be useful if FUN is already a function
that could be applied to the whole object such as rowSums or colSums.

When this is the case, it may be useful to provide a custom simplify function. Otherwise, the result
will be returned as a list with length equal to the number of chunks, which must be post-processed
to get into a desirable form.

For convenience to the programmer, several attributes are made available when view = "chunk”.

* "chunk_id":The index of the chunk currently being processed by FUN.

 "chunk_elt":The indices of the elements of the chunk, as rows/columns/elements in the origi-
nal matrix/vector.

* "pattern_id" (optional):The indices of the patterns that compose the current chunk.

 "pattern_elt" (optional):The indices of the elements of the patterns, as rows/columns/elements
in the original matrix/vector, that compose the current chunk.

The pattern argument can be used to iterate over dependent elements of a vector, or dependent
rows/columns of a matrix. This can be useful if the calculation for a particular row/column/element
depends on the values of others.

When pattern is provided, multiple rows/columns/elements will be passed to FUN, even when
view="element”. Each element of the pattern list should be a vector giving the indices that
should be passed to FUN.

This can be used to implement a rolling apply function.

Value

Typically, a list if simplify=FALSE. Otherwise, the results may be coerced to a vector or array.

Author(s)

Kylie A. Bemis

See Also

apply, lapply, mapply,

colStats 11
Examples
register(SerialParam())

set.seed(1)
X <= matrix(rnorm(1000*2), nrow=1000, ncol=1000)

out <- chunk_apply(x, mean, 1, chunks=20, verbose=TRUE)

colStats Row and Column Summary Statistics

Description

These functions perform calculation of summary statistics over matrix rows and columns, for each
level of a grouping variable (optionally), and with implicit row/column scaling and centering if
desired.

Usage

S4 method for signature 'ANY'
colStats(x, stat, groups,
na.rm = FALSE, tform = identity,
col.center = NULL, col.scale = NULL,
row.center = NULL, row.scale = NULL,
drop = TRUE, BPPARAM = bpparam(), ...)

S4 method for signature 'ANY'
rowStats(x, stat, groups,
na.rm = FALSE, tform = identity,
col.center = NULL, col.scale = NULL,
row.center = NULL, row.scale = NULL,

drop = TRUE, BPPARAM = bpparam(), ...)
Arguments
X A matrix on which to calculate summary statistics.
stat The name of summary statistics to compute over the rows or columns of a ma-

"non non non " "

trix. Allowable values include: "min", "max", "prod", "sum", "mean", "var",
"sd", "any", "all", and "nnzero".

groups A factor or vector giving the grouping. If not provided, no grouping will be
used.

na.rm If TRUE, remove NA values before summarizing.

tform A dimensionality-preserving transformation to be applied to the matrix (e.g.,
log() or sgrt()).

col.center A vector of column centers to substract from each row. (Or a matrix with a

column for each level of groups.)

12

col.scale

row.center

row.scale

drop

BPPARAM

Details

colStats

A vector of column scaling factors to divide from each row. (Or a matrix with a
column for each level of groups.)

A vector of row centers to substract from each column. (Or a matrix with a
column for each level of groups.)

A vector of row centers to scaling factors to divide from each column. (Or a
matrix with a column for each level of groups.)

If only a single summary statistic is calculated, return the results as a vector (or
matrix) rather than a list.

An optional instance of BiocParallelParam. See documentation for bplapply.

Additional arguments.

The summary statistics methods are calculated over chunks of the matrix using colstreamStats
and rowstreamStats. For matter objects, the iteration is performed over the major dimension for

IO efficiency.

Value

A list for each stat requested, where each element is either a vector (if no grouping variable is
provided) or a matrix where each column corresponds to a different level of groups.

If drop=TRUE, and only a single statistic is requested, then the result will be unlisted and returned
as a vector or matrix.

Author(s)

Kylie A. Bemis

See Also

colSums

Examples

register(SerialParam())

set.seed(1)

X <- matrix(runif(100*2), nrow=100, ncol=100)

groups <- as.factor(rep(letters[1:5], each=20))

colStats(x, "mean”, groups=groups)

combine 13

combine Combine Out-of-Memory Objects

Description

This is a generic function for combining matter objects. A default fallback method to c() is
provided as well.

This generic is internally used to implement c(), cbind(), and rbind() for matter objects.

Usage
combine(x, vy, ...)
Arguments
X One of the objects.
y A second object.
Any other objects of the same class as x and y.
Author(s)

Kylie A. Bemis

Examples

combine(x, y)

combiner Get or Set combiner for an Object

Description

This is a generic function for getting or setting the ’combiner’ for an object with values to combine.

Usage

combiner(object)

combiner(object) <- value

14 delayed-ops

Arguments
object An object with a combiner.
value The value to set the combiner.
Author(s)

Kylie A. Bemis

See Also

sparse_mat

Examples

X <- sparse_mat(diag(10))
combiner(x)
combiner(x) <- "sum”

x[]

delayed-ops Delayed Operations on “matter” Objects

Description

Some arithmetic, comparison, and logical operations are available as delayed operations on matter
objects. With these operations, no out-of-memory data is changed, and the operation is only exe-
cuted when elements of the object are actually accessed.

Details

Currently the following delayed operations are supported:
‘Arith’: 47, =7, %7 N e

‘Compare’: ‘==", >, ‘<, ‘I=", ‘<=, >=
‘Logic’: ‘&’, ‘I’

‘Ops’: ‘Arith’, ‘Compare’, ‘Logic’

i

‘Math’: ‘exp’, ‘log’, ‘log2’, ‘logl0’

Delayed operations are applied at the C++ layer immediately after the elements are read from virtual
memory. This means that operations that are implemented in C and/or C++ for efficiency (such as
summary statistics) will also reflect the execution of the delayed operations.

Value

A new matter object with the registered delayed operation. Data in storage is not modified; only
object metadata is changed.

drle-class 15

Author(s)
Kylie A. Bemis

See Also

Arith, Compare, Logic, Ops, Math

Examples
X <- matter(1:100)

y<-2=*xx+1

x[1:10]
y[1:10]

mean(x)
mean(y)

drle-class Delta Run Length Encoding

Description

The drle class stores delta-run-length-encoded vectors. These differ from other run-length-encoded
vectors provided by other packages in that they allow for runs of values that each differ by a common
difference (delta).

Usage

Instance creation
drle(x, cr_threshold = @, delta = TRUE)

is.drle(x)
Additional methods documented below

Arguments

X An integer or numeric vector to convert to delta run length encoding for drle();
an object to test if it is of class drle for is.drle().

cr_threshold The compression ratio threshold to use when converting a vector to delta run
length encoding. The default (0) always converts the object to drle. Values
of cr_threshold < 1 correspond to compressing even when the output will
be larger than the input (by a certain ratio). For values > 1, compression will
only take place when the output is (approximately) at least cr_threshold times
smaller.

delta Should non-zero deltas be considered by the encoding? (Default TRUE.) If FALSE,
then ordinary run-length-encoding is used.

16 drle-class

Value

An object of class drle.

Slots

values: The values that begin each run.
lengths: The length of each run.

deltas: The difference between the values of each run.

Creating Objects

drle instances can be created through drle().

Methods

Standard generic methods:

x[i]: Get the elements of the uncompressed vector.
length(x): Get the length of the uncompressed vector.

c(x, ...): Combine vectors.

Author(s)

Kylie A. Bemis

See Also

rle

Examples

Create a drle vector
x <- ¢(1,1,1,1,1,6,7,8,9,10,21,32,33,34,15)
y <- drle(x)

Check that their elements are equal
X == y[]

keys 17

keys Get or Set Keys for an Object

Description

This is a generic function for getting or setting "keys’ for an object with key-value pairs such as a
map data structure.

Usage

keys(object)

keys(object) <- value

Arguments
object An object with keys.
value The value to set the keys.
Author(s)

Kylie A. Bemis

See Also

sparse_mat

Examples

x <- sparse_mat(diag(10))
keys(x)

keys(x) <- 1:10

x[]

lapply Apply Functions Over “matter” Lists

Description

An implementation of lapply and sapply for matter_list objects.

18 lapply

Usage

S4 method for signature 'matter_list'
lapply(X, FUN, ..., BPPARAM = bpparam())

S4 method for signature 'matter_list'
sapply(X, FUN, ..., BPPARAM = bpparam(),
simplify = TRUE, USE.NAMES = TRUE)

Arguments
X A matter list-like object.
FUN The function to be applied.
Additional arguments to be passed to FUN.
simplify Should the result be simplified into a vector, matrix, or higher dimensional ar-
ray?
USE .NAMES Use names (X) for the names of the answer. If X is a character, use X as names
unless it has names already.
BPPARAM An optional instance of BiocParallelParam. See documentation for bplapply.
Details

Because FUN must be executed by the interpreter in the appropriate R environment, the full list
element will be loaded into memory. The chunksize of X is ignored. When performed in parallel,
the matter metadata is serialized to each R session, so all workers must be able to access the data
via the same paths().

Value

See lapply for details.

Author(s)
Kylie A. Bemis

See Also
lapply
Examples
register(SerialParam())
x <- matter_list(list(1:10, b=11:20, 21:30), names=c("a", "b", "c"))
lapply(x, sum)

sapply(x, sum)

locmax 19

locmax Local Maxima

Description

Find the indices of the local maxima of a vector.

Usage

locmax(x, halfWindow = 2, findLimits = FALSE)

Arguments
X A numeric vector.
halfWindow The number of vector elements to look on either side of an element before con-
sidering it a local maximum.
findLimits If TRUE, then also return the approximate boundaries of the peak.
Details

For this function, a local maximum is defined as an element greater than all of the elements within
halfWindow elements to the left of it, and greater than or equal to all of the elements within
halfWindow elements to the right of it.

The boundaries are found by descending the local maxima until the elements are no longer non-
increasing. Small increases within halfWindow of the local maxima are ignored.

Value
An integer vector giving the indices of the local maxima, potentially with attributes ’lower’ and
upper” if findLimits=TRUE.

Author(s)

Kylie A. Bemis

Examples
X <-c@, 1, 1,2,3, 2, 1,4,5, 1,1, 0

locmax(x, findLimits=TRUE)

20

matter-class

matter-class Vectors, Matrices, and Arrays Stored in Virtual Memory

Description

The matter class and its subclasses are designed for easy on-demand read/write access to binary
virtual memory data structures, and working with them as vectors, matrices, arrays, lists, and data
frames.

Usage

Instance creation
matter(...)

Check if an object is a matter object
is.matter(x)

Coerce an object to a matter object
as.matter(x, ...)

Additional methods documented below

Arguments
Arguments passed to subclasses.
X An object to check if it is a matter object or coerce to a matter object.
Value

An object of class matter.

Slots

data: This slot stores the information about locations of the data in virtual memory and within
files.

datamode: The storage mode of the accessed data when read into R. This is a character’ vector of
with possible values 'raw’, ’logical’, ’integer’, 'numeric’, or ’virtual’.
paths: A ’character’ vector of the paths to the files where the data are stored.

filemode: The read/write mode of the files where the data are stored. This should be 1’ for read-
only access, or 'tw’ for read/write access.

chunksize: The maximum number of elements which should be loaded into memory at once. Used
by methods implementing summary statistics and linear algebra. Ignored when explicitly
subsetting the dataset.

length: The length of the data.

dim: Either "NULL’ for vectors, or an integer vector of length one of more giving the maximal
indices in each dimension for matrices and arrays.

matter-class 21

names: The names of the data elements for vectors.

dimnames: Either 'NULL’ or the names for the dimensions. If not 'NULL’, then this should be

a list of character vectors of the length given by ’dim’ for each dimension. This is always
"NULL’ for vectors.

ops: Delayed operations to be applied on atoms.

Creating Objects

matter is a virtual class and cannot be instantiated directly, but instances of its subclasses can be
created through matter().

Methods
Class-specific methods:

atomdata(x): Access the ’data’ slot.

adata(x): An alias for atomdata(x).

datamode(x), datamode(x) <- value: Get or set ’datamode’.

paths(x), paths(x) <- value: Get or set ’paths’.

filemode(x), filemode(x) <- value: Get or set ’filemode’.

readonly(x), readonly(x) <- value: A shortcut for getting or setting ’filemode’.

chunksize(x), chunksize(x) <- value: Get or set ’filemode’.
Standard generic methods:

length(x), length(x) <- value: Get or set length’.
dim(x), dim(x) <- value: Get or set 'dim’.
names(x), names(x) <- value: Get or set 'names’.

dimnames(x), dimnames(x) <- value: Get or set ’"dimnames’.

Author(s)
Kylie A. Bemis

See Also

matter_vec, matter_mat, matter_arr, matter_list, matter_fc, matter_str, matter_df

Examples

Create a matter_vec vector
x <- matter(1:100, length=100)
X

Create a matter_mat matrix
x <- matter(1:100, nrow=10, ncol=10)
X

22 matter-datatypes

matter-datatypes Data Types for “matter” Objects

Description

The matter package defines a number of data types for translating between data elements stored in
virtual memory and data elements loaded into R. These are typically set and stored via the datamode
argument and slot.

At the R level, matter objects may be any of the following data modes:

* raw:matter objects of this mode are typically vectors of raw bytes.

» logical:Any matter object that represents a logical vector or has had any Compare or Logic
delayed operations applied to it will be of this type.

* integer:matter objects represented as integers in R.
* numeric:matter objects represented as doubles in R.
* character:matter objects representated as character vectors in R.

* virtual:A number of matter objects do not necessarily represent out-of-memory data, or
may include a number of components mixed between virtual memory and real memory; these
will use this data mode.

In virtual memory, matter objects may be composed of atomic units of the following data types:

 char:8-bit signed integer; defined as char.

* uchar:8-bit unsigned integer; used for ‘Rbyte’ or ‘raw’; defined as unsigned char.
* short:16-bit signed integer; defined as int16_t.

 ushort:16-bit unsigned integer; defined as uint16_t.

e int:32-bit signed integer; defined as int32_t.

e uint:32-bit unsigned integer; defined as uint32_t.

* long:64-bit signed integer; defined as int64_t.

* ulong:64-bit unsigned integer; defined as uint64_t.

* float:Platform dependent, but usually a 32-bit float; defined as float.

* double:Platform dependent, but usually a 64-bit float; defined as double.

While a substantial effort is made to coerce data elements properly between data types, sometimes
this cannot be done losslessly. This will generate a warning (typically many such warnings) that
can be silenced by setting options(matter.cast.warning=FALSE).

Note that the unsigned data types do not support NA; coercion to signed short and long attempts
to preserve missingness. The special values NaN, Inf, and -Inf are only supported by the floating-
point types, and will be set to NA for signed integral types, and to @ for unsigned integral types.

matter-options 23

matter-options Options for “matter” Objects

Description

The matter package provides the following options:

* options(matter.cast.warning=TRUE):Should a warning be emitted when casting between
data types results in a loss of precision?

options(matter.default.chunksize=1000000L):The default chunksize for new matter
objects. This is the (suggested) maximum number of elements which should be accessed at
once by summary functions and linear algebra. Ignored when explicitly subsetting the dataset.
Must be an integer.

options(matter.show.head=TRUE):Should a preview of the beginning of the data be dis-
played when the object is printed?

options(matter.show.head.n=6):The number of elements, rows, and/or columns to be dis-
played by the object preview.

options(matter.coerce.altrep=FALSE):When coercing matter objects to native R ob-
jects (such as matrix), should a matter-backed ALTREP object be returned instead? The
initial coercion will be cheap, and the result will look like a native R object. This does not
guarantee that the full data is never read into memory. Not all functions are ALTREP-aware
at the C-level, so some operations may still trigger the full data to be read into memory. This
should only ever happen once, as long as the object is not duplicated, though.

options(matter.coerce.altrep.list=FALSE):Should a matter-backed ALTREP list be
returned when coercing matter_list lists to native R lists? Lists are treated differently, be-
cause the coercion is more costly, as the metadata for each list element must be uncompressed
and converted to separate ALTREP representations. (Note that this does not affect matter_df
data frames, which do not compress metadata about the columns, because the columns are
regular matter vectors.)

options(matter.wrap.altrep=FALSE):When coercing to a matter-backed ALTREP ob-
ject, should the object be wrapped in an ALTREP wrapper? (This is always done in cases
where the coercion preserves existing attributes.) This allows setting of attributes without
triggering a (potentially expensive) duplication of the object when safe to do so.

options(matter.dump.dir=tempdir()):Temporary directory where matter object files should
be dumped when created without user-specified file paths.

matter_arr-class Out-of-Memory Arrays

Description

The matter_arr class implements out-of-memory arrays.

24 matter_arr-class

Usage

Instance creation

matter_arr(data, datamode = "double”, paths = NULL,
filemode = ifelse(all(file.exists(paths)), "r", "rw"),
offset = @, extent = prod(dim), dim = @, dimnames = NULL,
chunksize = getOption("matter.default.chunksize"), ...)

Additional methods documented below

Arguments
data An optional data vector which will be initially written to virtual memory if pro-
vided.
datamode A ’character’ vector giving the storage mode of the data in virtual memory. Al-

i

lowable values are the C types (’char’, 'uchar’, short’, ’ushort’, ’int’, ’uint’,
’long’, "ulong’, ’float’) and their R equivalents ('raw’, ’logical’, ’integer’, 'nu-
meric’). See ?datatypes for details.

paths A ’character’ vector of the paths to the files where the data are stored. If 'NULL’,
then a temporary file is created using tempfile.

filemode The read/write mode of the files where the data are stored. This should be 'r’ for
read-only access, or 'rw’ for read/write access.

offset A vector giving the offsets in number of bytes from the beginning of each file in
"paths’, specifying the start of the data to be accessed for each file.

extent A vector giving the length of the data for each file in ’paths’, specifying the
number of elements of size datamode’ to be accessed from each file.

dim A vector giving the dimensions of the array.

dimnames The names of the matrix dimensions.

chunksize The (suggested) maximum number of elements which should be accessed at

once by summary functions and linear algebra. Ignored when explicitly subset-
ting the dataset.

Additional arguments to be passed to constructor.

Value

An object of class matter_arr.

Slots

data: This slot stores the information about locations of the data in virtual memory and within the
files.

datamode: The storage mode of the accessed data when read into R. This is a ’character’ vector of
with possible values ‘raw’, ’logical’, ’integer’, numeric’, or 'virtual’.

paths: A ’character’ vector of the paths to the files where the data are stored.

filemode: The read/write mode of the files where the data are stored. This should be ’r’ for read-
only access, or 'tw’ for read/write access.

matter_arr-class 25

chunksize: The maximum number of elements which should be loaded into memory at once. Used
by methods implementing summary statistics and linear algebra. Ignored when explicitly
subsetting the dataset.

length: The length of the data.

dim: Either 'NULL’ for vectors, or an integer vector of length one of more giving the maximal
indices in each dimension for matrices and arrays.

names: The names of the data elements for vectors.

dimnames: Either 'NULL’ or the names for the dimensions. If not 'NULL’, then this should be
a list of character vectors of the length given by ’dim’ for each dimension. This is always
"NULL’ for vectors.

ops: Delayed operations to be applied on atoms.

Extends

matter

Creating Objects

matter_arr instances can be created through matter_arr() or matter().

Methods

Standard generic methods:

x[...]1, x[...]<-value: Get or set the elements of the array.

Author(s)

Kylie A. Bemis

See Also

matter

Examples

X <- matter_arr(1:1000, dim=c(10,10,10))
X

26 matter_df-class

matter_df-class Out-of-Memory Data Frames

Description

The virtual_df class implements lightweight data frames that may be a mixture of atomic vectors
and matter vectors, simulating the behavior of data. frame.

The matter_df class extends virtual_df to implement fully out-of-memory data frames where
all columns are matter objects.

Calling as.matter() on an ordinary R data. frame will coerce all columns to matter objects to
create a matter_df data frame.

Usage
Instance creation
virtual_df(..., row.names = NULL, stringsAsFactors = default.stringsAsFactors())
matter_df (..., row.names = NULL, stringsAsFactors = default.stringsAsFactors())

Additional methods documented below

Arguments
These arguments become the data columns or data frame variables. They should
be named.
row.names A character vector giving the row names.
stringsAsFactors
Should character vectors be converted to factors? This is recommended for
matter_df, as accessing the underlying out-of-memory integer vectors (for a
factor) is typically much faster than accessing a vector of out-of-memory strings.
Value

An object of class virtual_df or matter_df.

Slots

data: This slot stores the information about locations of the data in virtual memory and within the
files.

datamode: The storage mode of the accessed data when read into R. This is a ’character’ vector of
with possible values 'raw’, ’logical’, ’integer’, 'numeric’, or ’virtual’.

paths: A ’character’ vector of the paths to the files where the data are stored.

filemode: The read/write mode of the files where the data are stored. This should be ’r’ for read-
only access, or 'tw’ for read/write access.

matter_df-class 27

chunksize: The maximum number of elements which should be loaded into memory at once. Used
by methods implementing summary statistics and linear algebra. Ignored when explicitly
subsetting the dataset.

length: The length of the data.

dim: Either "NULL’ for vectors, or an integer vector of length one of more giving the maximal
indices in each dimension for matrices and arrays.

names: The names of the data elements for vectors.

dimnames: Either 'NULL’ or the names for the dimensions. If not 'NULL’, then this should be
a list of character vectors of the length given by ’dim’ for each dimension. This is always
"NULL’ for vectors.

ops: Delayed operations to be applied on atoms.

Extends

matter

Creating Objects

virtual_df instances can be created through virtual_df ().

matter_df instances can be created through matter_df ().

Methods
Standard generic methods:

x$name, x$name <- value: Get or set a single column.

x[[i]]1, x[[i]] <- value: Get or set a single column.

x[i], x[i] <- value: Get or set multiple columns.

x[i, j, ..., drop], x[i, j]<-value: Get or set the elements of the data frame.

Author(s)
Kylie A. Bemis

See Also

matter

Examples

X <- matter_df(a=as.matter(1:10), b=11:20, c=as.matter(letters[1:10]))
X

x[1:2]

x[[2]1]

x[["c"]1]

x[,"c"]

x[1:5,c("a","c")]

x$c

x$c[1:5]

28

matter_fc-class

matter_fc-class Out-of-Memory Factors

Description

The matter_fc class implements out-of-memory factors.

Usage

Instance creation
matter_fc(data, datamode = "int"”, paths = NULL,

filemode = ifelse(all(file.exists(paths)), "r", "rw"),
offset = @, extent = length, length = @OL, names = NULL,
levels = base::levels(as.factor(data)),

chunksize = getOption("matter.default.chunksize"), ...)

Additional methods documented below

Arguments

data

datamode

paths

filemode

offset

extent

length

names

levels

chunksize

Value

An optional data vector which will be initially written to the data in virtual
memory if provided.

Must be an integral type for factors.

A ’character’ vector of the paths to the files where the data are stored. If 'NULL’,
then a temporary file is created using tempfile.

The read/write mode of the files where the data are stored. This should be ’r’ for
read-only access, or 'rw’ for read/write access.

A vector giving the offsets in number of bytes from the beginning of each file in
"paths’, specifying the start of the data to be accessed for each file.

A vector giving the length of the data for each file in ’paths’, specifying the
number of elements of size ’datamode’ to be accessed from each file.

An optional number giving the total length of the data across all files, equal to
the sum of ’extent’. This is ignored and calculated automatically if ’extent’ is
specified.

The names of the data elements.
The levels of the factor.

The (suggested) maximum number of elements which should be accessed at
once by summary functions and linear algebra. Ignored when explicitly subset-
ting the dataset.

Additional arguments to be passed to constructor.

An object of class matter_fc.

matter_fc-class 29

Slots
data: This slot stores the information about locations of the data in virtual memory and within the
files.
datamode: The storage mode of the accessed data when read into R. This is a ’character’ vector of
with possible values 'raw’, ’logical’, ’integer’, 'numeric’, or ’virtual’.
paths: A ’character’ vector of the paths to the files where the data are stored.

filemode: The read/write mode of the files where the data are stored. This should be ’r’ for read-
only access, or 'tw’ for read/write access.

chunksize: The maximum number of elements which should be loaded into memory at once. Used
by methods implementing summary statistics and linear algebra. Ignored when explicitly
subsetting the dataset.

length: The length of the data.

dim: Either 'NULL’ for vectors, or an integer vector of length one of more giving the maximal
indices in each dimension for matrices and arrays.

names: The names of the data elements for vectors.

dimnames: Either ’NULL’ or the names for the dimensions. If not 'NULL’, then this should be
a list of character vectors of the length given by ’dim’ for each dimension. This is always
"NULL for vectors.

ops: Delayed operations to be applied on atoms.
levels: The levels of the factor.

Extends

matter, matter_vec

Creating Objects

matter_fc instances can be created through matter_fc() or matter().

Methods
Standard generic methods:

x[i], x[i] <- value: Get or set the elements of the factor.

levels(x), levels(x) <- value: Get or set the levels of the factor.
Author(s)

Kylie A. Bemis

See Also

matter, matter_vec

Examples

x <- matter_fc(rep(c(”a", "a", "b"), 5), levels=c("a", "b", "c"))
X

30

matter_list-class

matter_list-class

Out-of-Memory Lists of Vectors

Description

The matter_list class implements out-of-memory lists.

Usage

Instance creation
matter_list(data, datamode = "double"”, paths = NULL,

filemode = ifelse(all(file.exists(paths)), "r", "rw"),

offset = c(@, cumsum(sizeof(datamode) * extent)[-length(extent)]),
extent = lengths, lengths = @, names = NULL, dimnames = NULL,
chunksize = getOption("matter.default.chunksize”), ...)

Additional methods documented below

Arguments

data

datamode

paths

filemode

offset

extent

lengths
names
dimnames

chunksize

Value

An optional data list which will be initially written to the data in virtual memory
if provided.

A ’character’ vector giving the storage mode of the data in virtual memory. Al-
lowable values are the C types (‘char’, 'uchar’, short’, 'ushort’, ’int’, 'uint’,
’long’, ’ulong’, "float’) and their R equivalents (‘raw’, ’logical’, ’integer’, 'nu-
meric’). See ?datatypes for details.

A ’character’ vector of the paths to the files where the data are stored. If 'NULL’,
then a temporary file is created using tempfile.

The read/write mode of the files where the data are stored. This should be ’r’ for
read-only access, or 'rw’ for read/write access.

A vector giving the offsets in number of bytes from the beginning of each file in
"paths’, specifying the start of the data to be accessed for each file.

A vector giving the length of the data for each file in ’paths’, specifying the
number of elements of size ’datamode’ to be accessed from each file.

A vector giving the length of each element of the list.
The names of the data elements.
The names of the data elements’ data elements.

The (suggested) maximum number of elements which should be accessed at
once by summary functions and linear algebra. Ignored when explicitly subset-
ting the dataset.

Additional arguments to be passed to constructor.

An object of class matter_list.

matter_list-class 31

Slots

data: This slot stores the information about locations of the data in virtual memory and within the
files.

datamode: The storage mode of the accessed data when read into R. This is a "character’ vector of
with possible values 'raw’, ’logical’, ’integer’, 'numeric’, or ’virtual’.

paths: A ’character’ vector of the paths to the files where the data are stored.

filemode: The read/write mode of the files where the data are stored. This should be ’r’ for read-
only access, or 'tw’ for read/write access.

chunksize: The maximum number of elements which should be loaded into memory at once. Used
by methods implementing summary statistics and linear algebra. Ignored when explicitly
subsetting the dataset.

length: The length of the data.

dim: Either 'NULL’ for vectors, or an integer vector of length one of more giving the maximal
indices in each dimension for matrices and arrays.

names: The names of the data elements for vectors.

dimnames: Either 'NULL’ or the names for the dimensions. If not 'NULL’, then this should be
a list of character vectors of the length given by ’dim’ for each dimension. This is always
"NULL’ for vectors.

ops: Delayed operations to be applied on atoms.

Extends

matter

Creating Objects

matter_list instances can be created through matter_list() or matter().

Methods

Standard generic methods:

x[[i1], x[[i]] <- value: Get or set a single element of the list.
x[[i, j1]1: Get the jth sub-elements of the ith element of the list.
x[i], x[i] <- value: Get or set the ith elements of the list.

lengths(x): Get the lengths of all elements in the list.

Author(s)
Kylie A. Bemis

See Also

matter

32 matter_mat-class

Examples

x <- matter_list(list(c(TRUE,FALSE), 1:5, c(1.11, 2.22, 3.33)), lengths=c(2,5,3))
x[1]

x[1]

xCL[1]]

x[[3,11]
x[[2,1:3]]

matter_mat-class Out-of-Memory Matrices

Description

The matter_mat class implements out-of-memory matrices.

Usage

Instance creation
matter_mat(data, datamode = "double"”, paths = NULL,
filemode = ifelse(all(file.exists(paths)), "r", "rw"),
offset = c(@, cumsum(sizeof(datamode) * extent)[-length(extent)]),
extent = if (rowMaj) rep(ncol, nrow) else rep(nrow, ncol),
nrow = @, ncol = @, rowMaj = FALSE, dimnames = NULL,
chunksize = getOption("matter.default.chunksize"), ...)

Additional methods documented below

Arguments

data An optional data matrix which will be initially written to the data in virtual
memory if provided.

datamode A ’character’ vector giving the storage mode of the data in virtual memory. Al-
lowable values are the C types (’char’, 'uchar’, short’, ’ushort’, ’int’, ’uint’,
’long’, ’ulong’, *float’) and their R equivalents (raw’, ’logical’, ’integer’, nu-
meric’). See ?datatypes for details.

paths A ’character’ vector of the paths to the files where the data are stored. If 'NULL’,
then a temporary file is created using tempfile.

filemode The read/write mode of the files where the data are stored. This should be ’r’ for
read-only access, or ‘rw’ for read/write access.

offset A vector giving the offsets in number of bytes from the beginning of each file in
“paths’, specifying the start of the data to be accessed for each file.

extent A vector giving the length of the data for each file in ’paths’, specifying the

number of elements of size ’datamode’ to be accessed from each file.

nrow An optional number giving the total number of rows.

matter_mat-class 33

ncol An optional number giving the total number of columns.

rowMaj Whether the data should be stored in row-major order (as opposed to column-
major order) in virtual memory. Defaults to "FALSE’, for efficient access to
columns. Set to "TRUE’ for more efficient access to rows instead.

dimnames The names of the matrix dimensions.

chunksize The (suggested) maximum number of elements which should be accessed at
once by summary functions and linear algebra. Ignored when explicitly subset-
ting the dataset.

Additional arguments to be passed to constructor.

Value

An object of class matter_mat.

Slots

data: This slot stores the information about locations of the data in virtual memory and within the
files.

datamode: The storage mode of the accessed data when read into R. This is a ’character’ vector of
with possible values 'raw’, ’logical’, ’integer’, 'numeric’, or ’virtual’.

paths: A ’character’ vector of the paths to the files where the data are stored.

filemode: The read/write mode of the files where the data are stored. This should be ’r’ for read-
only access, or 'tw’ for read/write access.

chunksize: The maximum number of elements which should be loaded into memory at once. Used
by methods implementing summary statistics and linear algebra. Ignored when explicitly
subsetting the dataset.

length: The length of the data.

dim: Either 'NULL’ for vectors, or an integer vector of length one of more giving the maximal
indices in each dimension for matrices and arrays.

names: The names of the data elements for vectors.

dimnames: Either 'NULL’ or the names for the dimensions. If not 'NULL’, then this should be
a list of character vectors of the length given by ’dim’ for each dimension. This is always
"NULL’ for vectors.

ops: Delayed operations to be applied on atoms.

Extends

matter

Creating Objects

matter_mat instances can be created through matter_mat() or matter().

34 matter_str-class

Methods

Standard generic methods:

x[i, j, ..., drop], x[i, j]<-value: Get or set the elements of the matrix. Use drop = NULL
to return a subset of the same class as the object.

x %*% y: Matrix multiplication. At least one matrix must be an in-memory R matrix (or vector).

crossprod(x, y): Alias for t(x) %*% y.

tcrossprod(x, y): Alias for x %*% t(y).

cbind(x, ...), rbind(x, ...): Combine matrices by row or column.

t(x): Transpose a matrix. This is a quick operation which only changes metadata and does not
touch the out-of-memory data.
Author(s)
Kylie A. Bemis

See Also

matter

Examples

X <- matter_mat(1:100, nrow=10, ncol=10)
X

matter_str-class Out-of-Memory Strings

Description

The matter_str class implements out-of-memory strings.

Usage

Instance creation

matter_str(data, datamode = "uchar”, paths = NULL,
filemode = ifelse(all(file.exists(paths)), "r", "rw"),
offset = c(@, cumsum(sizeof ("uchar”) * extent)[-length(extent)]),
extent = nchar, nchar = @, names = NULL, encoding = "unknown",
chunksize = getOption("matter.default.chunksize”), ...)

Additional methods documented below

matter_str-class 35

Arguments

data An optional character vector which will be initially written to the data in virtual
memory if provided.

datamode Must be "uchar” (or "raw") for strings.

paths A ’character’ vector of the paths to the files where the data are stored. If 'NULL’,
then a temporary file is created using tempfile.

filemode The read/write mode of the files where the data are stored. This should be ’r’ for
read-only access, or 'rw’ for read/write access.

offset A vector giving the offsets in number of bytes from the beginning of each file in
“paths’, specifying the start of the data to be accessed for each file.

extent A vector giving the length of the data for each file in ’paths’, specifying the
number of elements of size *datamode’ to be accessed from each file.

nchar A vector giving the length of each element of the character vector.

names The names of the data elements.

encoding The character encoding to use (if known).

chunksize The (suggested) maximum number of elements which should be accessed at
once by summary functions and linear algebra. Ignored when explicitly subset-
ting the dataset.
Additional arguments to be passed to constructor.

Value

An object of class matter_str.

Slots

data: This slot stores the information about locations of the data in virtual memory and within the
files.

datamode: The storage mode of the accessed data when read into R. This is a ’character’ vector of
with possible values 'raw’, ’logical’, ’integer’, 'numeric’, or ’virtual’.
paths: A ’character’ vector of the paths to the files where the data are stored.

filemode: The read/write mode of the files where the data are stored. This should be 'r’ for read-
only access, or 'tw’ for read/write access.

chunksize: The maximum number of elements which should be loaded into memory at once. Used
by methods implementing summary statistics and linear algebra. Ignored when explicitly
subsetting the dataset.

length: The length of the data.

dim: Either "NULL’ for vectors, or an integer vector of length one of more giving the maximal
indices in each dimension for matrices and arrays.

names: The names of the data elements for vectors.

dimnames: Either 'NULL’ or the names for the dimensions. If not 'NULL’, then this should be
a list of character vectors of the length given by ’dim’ for each dimension. This is always
"NULL’ for vectors.

ops: Delayed operations to be applied on atoms.
encoding: The character encoding of the strings.

36 matter_vec-class

Extends

matter

Creating Objects

matter_str instances can be created through matter_str() or matter().

Methods

Standard generic methods:

x[i], x[i] <- value: Get or set the string elements of the vector.

lengths(x): Get the number of characters (in bytes) of all string elements in the vector.

Author(s)

Kylie A. Bemis

See Also

matter

Examples

x <- matter_str(rep(c("hello”, "world!"), 50))
X

matter_vec-class Out-of-Memory Vectors

Description

The matter_vec class implements out-of-memory vectors.

Usage

Instance creation

matter_vec(data, datamode = "double"”, paths = NULL,
filemode = ifelse(all(file.exists(paths)), "r", "rw"),
offset = @, extent = length, length = 0L, names = NULL,
chunksize = getOption("matter.default.chunksize”), ...)

Additional methods documented below

matter_vec-class 37

Arguments
data An optional data vector which will be initially written to the data in virtual
memory if provided.
datamode A ’character’ vector giving the storage mode of the data in virtual memory. Al-

lowable values are the C types ("char’, 'uchar’, short’, ’ushort’, ’int’, ’uint’,
’long’, ’ulong’, "float’) and their R equivalents ('raw’, ’logical’, ’integer’, 'nu-
meric’). See ?datatypes for details.

paths A ’character’ vector of the paths to the files where the data are stored. If 'NULL’,
then a temporary file is created using tempfile.

filemode The read/write mode of the files where the data are stored. This should be ’r’ for
read-only access, or 'rw’ for read/write access.

offset A vector giving the offsets in number of bytes from the beginning of each file in
“paths’, specifying the start of the data to be accessed for each file.

extent A vector giving the length of the data for each file in ’paths’, specifying the
number of elements of size *datamode’ to be accessed from each file.

length An optional number giving the total length of the data across all files, equal to
the sum of ’extent’. This is ignored and calculated automatically if ’extent’ is
specified.

names The names of the data elements.

chunksize The (suggested) maximum number of elements which should be accessed at

once by summary functions and linear algebra. Ignored when explicitly subset-
ting the dataset.

Additional arguments to be passed to constructor.

Value

An object of class matter_vec.

Slots
data: This slot stores the information about locations of the data in virtual memory and within the
files.

datamode: The storage mode of the accessed data when read into R. This is a *character’ vector of
with possible values 'raw’, ’logical’, ’integer’, 'numeric’, or ’virtual’.
paths: A ’character’ vector of the paths to the files where the data are stored.

filemode: The read/write mode of the files where the data are stored. This should be 'r’ for read-
only access, or 'tw’ for read/write access.

chunksize: The maximum number of elements which should be loaded into memory at once. Used
by methods implementing summary statistics and linear algebra. Ignored when explicitly
subsetting the dataset.

length: The length of the data.

dim: Either 'NULL’ for vectors, or an integer vector of length one of more giving the maximal
indices in each dimension for matrices and arrays.

names: The names of the data elements for vectors.

38 prcomp

dimnames: Either ’'NULL’ or the names for the dimensions. If not 'NULL’, then this should be
a list of character vectors of the length given by ’dim’ for each dimension. This is always
"NULL’ for vectors.

ops: Delayed operations to be applied on atoms.

Extends

matter

Creating Objects

matter_vec instances can be created through matter_vec() or matter().

Methods
Standard generic methods:

x[1], x[i] <- value: Get or set the elements of the vector.
c(x, ...): Combine vectors.

t(x): Transpose a vector (to a row matrix). This is a quick operation which only changes metadata
and does not touch the out-of-memory data.

Author(s)
Kylie A. Bemis

See Also

matter

Examples

x <- matter_vec(1:100)
X

prcomp Principal Components Analysis for “matter” Matrices

Description
This method allows computation of a truncated principal components analysis of a matter_mat
matrix using the implicitly restarted Lanczos method irlba.

Usage

S4 method for signature 'matter_mat'
prcomp(x, n = 3, retx = TRUE, center = TRUE, scale. = FALSE, ...)

prcomp

Arguments

X
n
retx

center

scale.

Value

39

A matter matrix.
The number of principal componenets to return, must be less than min(dim(x)).
A logical value indicating whether the rotated variables should be returned.

A logical value indicating whether the variables should be shifted to be zero-
centered, or a centering vector of length equal to the number of columns of x.
The centering is performed implicitly and does not change the out-of-memory
data in x.

A logical value indicating whether the variables should be scaled to have unit
variance, or a scaling vector of length equal to the number of columns of x. The
scaling is performed implicitly and does not change the out-of-memory data in
X.

Additional options passed to irlba.

An object of class ‘prcomp’. See ?prcomp for details.

Note

The ’tol’ truncation argument found in the default prcomp method is not supported. In place of the
truncation tolerance in the original function, the argument n explicitly gives the number of principal
components to return. A warning is generated if the argument ’tol’ is used.

Author(s)

Kylie A. Bemis

See Also

bigglm

Examples

set.seed(1)

x <- matter_mat(rnorm(1000), nrow=100, ncol=10)

prcomp(x)

40 profmem

profmem Profile Memory Use

Description
These are utility functions for profiling memory used by objects and by R during the execution of
an expression.

Usage

profmem(expr)

mem(x, reset = FALSE)

Arguments
expr An expression to be evaluated.
X An object, to identify how much memory it is using.
reset Should the maximum memory used by R be reset?
Details

These are wrappers around the built-in gc function. Note that they only count memory managed by
R.

Value

For profmem, a vector giving [1] the amount of memory used at the start of execution, [2] the
amount of memory used at the end of execution, [3] the maximum amount of memory used during
execution, [4] the memory overhead as defined by the maximum memory used minus the starting
memory use, and [5] the execution time in seconds.

For mem, either a single numeric value giving the memory used by an object, or a vector providing
a more readable version of the information returned by gc (see its help page for details).

Author(s)

Kylie A. Bemis

See Also

gc?

rep_vt-class 41
Examples

x <- 1:100

mem(x)

profmem(mean(x + 1))

rep_vt-class Virtual Replication of Vectors

Description

The rep_vt class simulates the behavior of the base function rep without actually allocating mem-
ory for the duplication. Only the original vector and the expected length of the result are stored. All
attributes of the original vector (including names) are dropped.

Usage
Instance creation

rep_vt(x, times, length.out = length(x) * times)

Additional methods documented below

Arguments
X A vector (of any mode).
times The number of times to repeat the whole vector.
length.out The desired length of the result.

Value

An object of class rep_vt.

Slots

data: The original vector.
length: The expected length of the repeated virtual vector.

Creating Objects

rep_vt instances can be created through rep_vt().

Methods
Standard generic methods:

x[i]: Get the elements of the uncompressed vector.
x[[i]]: Get a single element of the uncompressed vector.

length(x): Get the length of the uncompressed vector.

42 scale

Author(s)
Kylie A. Bemis

See Also
[basel{rep}

Examples

Create a rep_vt vector

init <- 1:3

x <- rep(init, length.out=100)

y <- rep_vt(init, length.out=100)

Check that their elements are equal
X == y[]

scale Scaling and Centering of “matter” Matrices

Description

An implementation of scale for matter_mat matrices.

Usage

S4 method for signature 'matter_mat'
scale(x, center = TRUE, scale = TRUE)

Arguments
X A matter_mat object.
center Either a logical value or a numeric vector of length equal to the number of
columns of ’x’.
scale Either a logical value or a numeric vector of length equal to the number of
columns of ’x’.
Details

See scale for details.

Value

A matter_mat object with the appropriate ‘scaled:center’ and ‘scaled:scale’ attributes set. No data
in virtual memory is changed, but the scaling will be applied any time the data is read. This includes
but is not limited to loading data elements via subsetting, summary statistics methods, and matrix
multiplication.

sparse_mat-class 43

Author(s)
Kylie A. Bemis

See Also

scale

Examples

x <- matter(1:100, nrow=10, ncol=10)

scale(x)

sparse_mat-class Sparse Matrices

Description

The sparse_mat class implements sparse matrices, potentially stored out-of-memory. Both compressed-
sparse-column (CSC) and compressed-sparse-row (CSR) formats are supported. Non-zero elements
are internally represented as key-value pairs.

Usage
Instance creation
sparse_mat(data, datamode = "double”, nrow = @, ncol = 0,
rowMaj = FALSE, dimnames = NULL, keys = NULL,
tolerance = c(abs=0), combiner = "identity",
chunksize = getOption("matter.default.chunksize"), ...)

Check if an object is a sparse matrix
is.sparse(x)

Coerce an object to a sparse matrix
as.sparse(x, ...)

Additional methods documented below

Arguments
data Either a length-2 ’list’ with elements ’keys’ and ’values’ which provide the
halves of the key-value pairs of the non-zero elements, or a data matrix that
will be used to initialized the sparse matrix. If a list is given, all ’keys’ elements
must be sorted in increasing order.
datamode A ’character’ vector giving the storage mode of the data in virtual memory. Al-

lowable values are R numeric and logical types (’logical’, ’integer’, numeric’)
and their C equivalents.

44

nrow

ncol

keys

rowMaj

dimnames

tolerance

combiner

chunksize

Value

sparse_mat-class

An optional number giving the total number of rows.
An optional number giving the total number of columns.

Either NULL or a vector with length equal to the number of rows (for CSC
matrices) or the number of columns (for CSR matrices). If NULL, then the
’key’ portion of the key-value pairs that make up the non-zero elements are
assumed to be row or column indices. If a vector, then they define the how
the non-zero elements are matched to rows or columns. The ’key’ portion of
each non-zero element is matched against this canonical set of keys using binary
search. Allowed types for keys are ’integer’, numeric’, and ’character’.

Whether the data should be stored using compressed-sparse-row (CSR) repre-
sentation (as opposed to compressed-sparse-column (CSC) representation). De-
faults to 'FALSE’, for efficient access to columns. Set to 'TRUE’ for more
efficient access to rows instead.

The names of the sparse matrix dimensions.

For 'numeric’ keys, the tolerance used for floating-point equality when deter-
mining key matches. The vector should be named. Use *absolute’ to use abso-
lute differences, and ’relative’ to use relative differences.

In the case of collisions when matching keys, how the row- or column-vectors
should be combined. Acceptable values are "identity", "min", "max", "sum",
and "mean". A user-specified function may also be provided. Using "identity"
means collisions result in an error. Using "sum" or "mean" results in binning all
matches.

The (suggested) maximum number of elements which should be accessed at
once by summary functions and linear algebra. Ignored when explicitly subset-
ting the dataset.

An object to check if it is a sparse matrix or coerce to a sparse matrix.

Additional arguments to be passed to constructor.

An object of class sparse_mat.

Slots

data: A length-2 ’list’ with elements "keys’ and ’values’ which provide the halves of the key-value
pairs of the non-zero elements.

datamode: The storage mode of the accessed data when read into R. This should a ’character’
vector of length one with value ’integer’ or numeric’.

paths: A ’character’ vector of the paths to the files where the data are stored.

filemode: The read/write mode of the files where the data are stored. This should be 'r’ for read-
only access, or 'tw’ for read/write access.

chunksize: The maximum number of elements which should be loaded into memory at once. Used
by methods implementing summary statistics and linear algebra. Ignored when explicitly
subsetting the dataset.

length: The length of the data.

sparse_mat-class 45

dim: Either 'NULL’ for vectors, or an integer vector of length one of more giving the maximal
indices in each dimension for matrices and arrays.

names: The names of the data elements for vectors.

dimnames: Either ’NULL’ or the names for the dimensions. If not ’NULL’, then this should be
a list of character vectors of the length given by ’dim’ for each dimension. This is always
"NULL’ for vectors.

ops: Delayed operations to be applied on atoms.

keys Either NULL or a vector with length equal to the number of rows (for CSC matrices) or the
number of columns (for CSR matrices). If NULL, then the "key’ portion of the key-value pairs
that make up the non-zero elements are assumed to be row or column indices. If a vector, then
they define the how the non-zero elements are matched to rows or columns. The ’key’ portion
of each non-zero element is matched against this canonical set of keys using binary search.
Allowed types for keys are ’integer’, 'numeric’, and ’character’.

tolerance: For 'numeric’ keys, the tolerance used for floating-point equality when determining
key matches. An attribute ’type’ gives whether ’absolute’ or 'relative’ differences should be
used for the comparison.

combiner: This is a function determining how the row- or column-vectors should be combined (or
not) when key matching collisions occur.
Warning

If ’data’ is given as a length-2 list of key-value pairs, no checking is performed on the validity of
the key-value pairs, as this may be a costly operation if the list is stored in virtual memory. Each
element of the ’keys’ element must be sorfed in increasing order, or behavior may be unexpected.

Assigning a new data element to the sparse matrix will always sort the key-value pairs of the row
or column into which it was assigned.
Extends

matter

Creating Objects

sparse_mat instances can be created through sparse_mat ().

Methods
Standard generic methods:

x[i, j, ..., drop], x[i, j]<-value: Get or set the elements of the sparse matrix. Use drop =
NULL to return a subset of the same class as the object.
cbind(x, ...), rbind(x, ...): Combine sparse matrices by row or column.

t(x): Transpose a matrix. This is a quick operation which only changes metadata and does not
touch the data representation.

Author(s)
Kylie A. Bemis

46 stream-stats

See Also

matter

Examples

keys <- list(
c(1,4,8,10),
c(2,3,5),
c(1,2,7,9))

values <- list(
rnorm(4),
rnorm(3),
rnorm(4))

init1 <- list(keys=keys, values=values)

x <- sparse_mat(initl1, nrow=10)
x[]

init2 <- matrix(rbinom(100, 1, ©.2), nrow=10, ncol=10)

y <- sparse_mat(init2, keys=letters[1:10])
y[]

stream-stats Streaming Summary Statistics

Description

These functions allow calculation of streaming statistics. They are useful, for example, for calcu-
lating summary statistics on small chunks of a larger dataset, and then combining them to calculate
the summary statistics for the whole dataset.

This is not particularly interesting for simpler, commutative statistics like sum(), but it is useful for
calculating non-commutative statistics like running sd() or var () on pieces of a larger dataset.

Usage
calculate streaming univariate statistics
s_range(x, ..., na.rm = FALSE)
s_min(x, ..., na.rm = FALSE)
s_max(x, ..., na.rm = FALSE)
s_prod(x, ..., na.rm = FALSE)

s_sum(x, ..., na.rm = FALSE)

stream-stats

s_mean(x,
s_var(x, ...,
s_sd(x, ...,
s_any(x, ...,
s_all(x, ...,

s_nnzero(x,

na.rm

47

., ha.rm = FALSE)
na.rm = FALSE)
na.rm = FALSE)

na.rm = FALSE)

FALSE)

., ha.rm = FALSE)

calculate streaming matrix statistics
colstreamStats(x, stat, na.rm = FALSE, ...)

rowstreamStats(x, stat, na.rm = FALSE, ...)

calculate combined summary statistics

stat_c(x, vy,

Arguments

na.rm

Details

>

Object(s) on which to calculate a summary statistic, or a summary statistic to
combine.
The name of a summary statistic to compute over the rows or columns of a ma-

non non non non

trix. Allowable values include: "range", "min", "max", "prod", "sum", "mean",

non

"var", "sd", "any", "all", and "nnzero".

If TRUE, remove NA values before summarizing.

These summary statistics methods are intended to be applied to chunks of a larger dataset. They
can then be combined either with the individual summary statistic functions, or with stat_c(), to
produce the combined summary statistic for the full dataset. This is most useful for calculating
running variances and standard deviations iteratively, which would be difficult or impossible to
calculate on the full dataset.

The variances and standard deviations are calculated using running sum of squares formulas which
can be calculated iteratively and are accurate for large floating-point datasets (see reference).

Value

For all univariate functions except s_range(), a single number giving the summary statistic. For
s_range(), two numbers giving the minimum and the maximum values.

For colstreamStats() and rowstreamStats(), a vector of summary statistics.

Author(s)
Kylie A. Bemis

48 struct

References
B. P. Welford, “Note on a Method for Calculating Corrected Sums of Squares and Products,” Tech-
nometrics, vol. 4, no. 3, pp. 1-3, Aug. 1962.

B. O’Neill, “Some Useful Moment Results in Sampling Problems,” The American Statistician, vol.
68, no. 4, pp. 282-296, Sep. 2014.

See Also

Summary

Examples

set.seed(1)
x <- sample(1:100, size=10)
y <- sample(1:100, size=10)

sx <- s_var(x)
sy <- s_var(y)

var(c(x, ¥))
stat_c(sx, sy) # should be the same

sxy <- stat_c(sx, sy)

calculate with 1 new observation
var(c(x, y, 99))
stat_c(sxy, 99)

calculate over rows of a matrix
set.seed(2)

A <- matrix(rnorm(100), nrow=10)
B <- matrix(rnorm(100), nrow=10)

sx <- rowstreamStats(A, "var")
sy <- rowstreamStats(B, "var")

apply(cbind(A, B), 1, var)
stat_c(sx, sy) # should be the same

struct C-Style Structs Stored in Virtual Memory

Description
This is a convenience function for creating and reading C-style structs in a single file stored in
virtual memory.

Usage

struct(..., filename = NULL, filemode = "rw", offset = @)

summary-stats 49

Arguments
Named integers giving the members of the struct. They should be of the form
name=c (type=length).
filename A single string giving the name of the file.
filemode The mode to use to open the file.
offset A scalar integer giving the offset from the beginning of the file.
Details

This is simply a convenient wrapper around the wrapper around matter_list that allows easy
specification of C-style structs in a file.
Value

A object of class matter_list.

Author(s)

Kylie A. Bemis

See Also

matter_list

Examples
x <= struct(first=c(int=1), second=c(double=1))

x$first <- 2L
x$second <- 3.33

x$first
x$second

summary-stats Summary Statistics for “matter” Objects

Description

These functions efficiently calculate summary statistics for matter objects. For matrices, they
operate efficiently on both rows and columns.

50

Usage

S4 method for signature 'matter_mat'

rowSums(x, na.rm)

S4 method for signature 'matter_mat'

rowSds(x, na.rm)

S4 method for signature 'matter_mat'

rowVars(x, na.rm)
Arguments

X A matter object.

na.rm If TRUE, remove NA values before summarizing.
Details

S4 method for signature
range(x, na.rm)

S4 method for signature
min(x, na.rm)

S4 method for signature
max(x, na.rm)

S4 method for signature
prod(x, na.rm)

S4 method for signature
mean(x, ha.rm)

S4 method for signature
sum(x, na.rm)

S4 method for signature
sd(x, na.rm)

S4 method for signature
var(x, na.rm)

S4 method for signature
any(x, na.rm)

S4 method for signature
all(x, na.rm)

S4 method for signature
colMeans(x, na.rm)

S4 method for signature
colSums(x, na.rm)

S4 method for signature
colSds(x, na.rm)

S4 method for signature
colVars(x, na.rm)

S4 method for signature
rowMeans(x, na.rm)

'matter’

'matter’

'matter’

'matter'

'matter’

'matter’

'matter’

'matter’

'matter’

'matter’

'matter_mat'

'matter_mat'

'matter_mat'

'matter_mat'

'matter_mat'

summary-stats

These summary statistics methods operate on chunks of data (equal to the chunksize of x) which

are loaded into memory and then freed before reading the next chunk.

summary-stats 51

For row and column summaries on matrices, the iteration scheme is dependent on the layout of the
data. Column-major matrices will always be iterated over by column, and row-major matrices will
always be iterated over by row. Row statistics on column-major matrices and column statistics on
row-major matrices are calculated iteratively.

The efficiency of these methods is entirely dependent on the chunksize of x. Larger chunks will
yield faster calculations, but greater memory usage. The row and column summary methods may
be more or less efficient than the equivalent call to apply, depending on the chunk size.

Variance and standard deviation are calculated using a running sum of squares formula which can
be calculated iteratively and is accurate for large floating-point datasets (see reference).

Value

For mean, sd, and var, a single number. For the column summaries, a vector of length equal to the
number of columns of the matrix. For the row summaries, a vector of length equal to the number of
rows of the matrix.

Author(s)
Kylie A. Bemis

References

B. P. Welford, “Note on a Method for Calculating Corrected Sums of Squares and Products,” Tech-
nometrics, vol. 4, no. 3, pp. 1-3, Aug. 1962.

See Also

stream_stat

Examples

x <- matter(1:100, nrow=10, ncol=10)

sum(x)
mean(x)
var(x)
sd(x)

colSums(x)
colMeans(x)
colVars(x)
colSds(x)

rowSums (x)
rowMeans (x)
rowvVars(x)
rowSds(x)

52 uuid

tolerance Get or Set Tolerance for an Object

Description

This is a generic function for getting or setting ’tolerance’ for an object which tests floating point

equality.
Usage

tolerance(object, ...)

tolerance(object, ...) <- value
Arguments

object An object with tolerance.

Additional arguments.

value The value to set the tolerance.

Author(s)

Kylie A. Bemis

See Also

sparse_mat

Examples

x <- sparse_mat(diag(10), keys=rnorm(10))

tolerance(x)
tolerance(x) <- c(absolute=0.1)
x[]
uuid Universally Unique Identifiers
Description

Generate a UUID.

uuid 53
Usage

uuid(uppercase = FALSE)

hex2raw(x)

raw2hex(x, uppercase = FALSE)

Arguments
X A vector of to convert between raw bytes and hexadecimal strings.
uppercase Should the result be in uppercase?

Details

uuid generates a random universally unique identifier.
hex2raw converts a hexadecimal string to a raw vector.

raw2hex converts a raw vector to a hexadecimal string.

Value

For uuid, a list of length 2:

* string: A character vector giving the UUID.
* bytes: The raw bytes of the UUID.

For hex2raw, a raw vector.

For raw2hex, a character vector of length 1.

Author(s)

Kylie A. Bemis

Examples

id <= uuid()

id
hex2raw(id$string)
raw2hex(id$bytes)

54

virtual_mat-class

virtual_mat-class

Virtual Matrices

Description

The virtual_mat class implements virtual matrices, which may hold any matrix-like objects. It
is provided primarily to allow combining of matter matrix classes that could not be combined

otherwise.

Usage

Instance creation
virtual_mat(data, datamode = "double”, rowMaj = FALSE,

dimnames = NULL, index = NULL, transpose = FALSE,
chunksize = getOption("matter.default.chunksize"), ...)

Check if an object is a virtual matrix

is.virtual(x)

Coerce an object to a virtual matrix

as.virtual(x,

)

Additional methods documented below

Arguments

data

datamode

rowMaj
dimnames
index
transpose

chunksize

Value

A list of matrices or vectors to combine.

A ’character’ vector giving the storage mode of the data in virtual memory. Al-
lowable values are R numeric and logical types (’logical’, ’integer’, 'numeric’)
and their C equivalents.

Whether the matrices in data are combined by row (TRUE) or by column (FALSE.
The names of the virtual matrix dimensions.

A length-2 list of row and column indices giving a submatrix, if desired.
Should the matrix be transposed?

The (suggested) maximum number of elements which should be accessed at
once by summary functions and linear algebra. Ignored when explicitly subset-
ting the dataset.

An object to check if it is a virtual matrix or coerce to a virtual matrix.

Additional arguments to be passed to constructor.

An object of class virtual_mat.

virtual mat-class 55

Slots

data: A list of the original matrices or row/column-vectors.

datamode: The storage mode of the accessed data when read into R. This should a ’character’
vector of length one with value ’integer’ or *numeric’.

paths: A ’character’ vector of the paths to the files where the data are stored.

filemode: The read/write mode of the files where the data are stored. This should be ’r’ for read-
only access, or 'tw’ for read/write access.

chunksize: The maximum number of elements which should be loaded into memory at once. Used
by methods implementing summary statistics and linear algebra. Ignored when explicitly
subsetting the dataset.

length: The length of the data.

dim: Either 'NULL’ for vectors, or an integer vector of length one of more giving the maximal
indices in each dimension for matrices and arrays.

names: The names of the data elements for vectors.

dimnames: Either ’'NULL’ or the names for the dimensions. If not 'NULL’, then this should be
a list of character vectors of the length given by ’dim’ for each dimension. This is always
’NULL for vectors.

ops: Delayed operations to be applied on atoms.
index A length-2 list of row and column indices giving a virtual submatrix.

transpose TRUE if the virtual matrix should be transposed, and FALSE otherwise.

Extends

matter

Creating Objects

virtual_mat instances can be created through virtual_mat().

Methods
Standard generic methods:

x[i, j, ..., drop]: Get or set the elements of the virtual matrix. Use drop = NULL to return a
subset of the same class as the object.

cbind(x, ...), rbind(x, ...): Combine virtual matrices by row or column.

t(x): Transpose a matrix. This is a quick operation which only changes metadata and does not
touch the data representation.

Author(s)
Kylie A. Bemis

See Also

matter

56 virtual_mat-class

Examples

x <= matrix(runif(50), nrow=10, ncol=5)

X <- virtual_mat(list(x, x))
x[]

Index

* 1O

matter-class, 20
matter-datatypes, 22
matter_arr-class, 23
matter_df-class, 26
matter_fc-class, 28
matter_list-class, 30
matter_mat-class, 32
matter_str-class, 34
matter_vec-class, 36

struct, 48
* arith
delayed-ops, 14
* array

matter-class, 20
matter_arr-class, 23
matter_df-class, 26
matter_fc-class, 28
matter_list-class, 30
matter_mat-class, 32
matter_str-class, 34
matter_vec-class, 36
sparse_mat-class, 43

struct, 48
virtual_mat-class, 54
* classes

drle-class, 15
matter-class, 20
matter_arr-class, 23
matter_df-class, 26
matter_fc-class, 28
matter_list-class, 30
matter_mat-class, 32
matter_str-class, 34
matter_vec-class, 36
rep_vt-class, 41
sparse_mat-class, 43
virtual_mat-class, 54
+ methods

57

apply, 2
chunk_apply, 8
colStats, 11
delayed-ops, 14
lapply, 17
scale, 42
stream-stats, 46
summary-stats, 49
* misc
matter-options, 23
+ models
biglm, 4
+ multivariate
prcomp, 38
* regression
biglm, 4
* univar
colStats, 11
stream-stats, 46
summary-stats, 49
* utilities
binvec, 5
bsearch, 6
checksum, 7
combine, 13
combiner, 13
keys, 17
locmax, 19
profmem, 40
struct, 48
tolerance, 52
uuid, 52
[,atoms, ANY,ANY, ANY-method
(matter-class), 20
[,atoms,ANY,missing, ANY-method
(matter-class), 20
[,atoms,missing, ANY,ANY-method
(matter-class), 20
[,drle,ANY,missing,missing-method

58

(drle-class), 15
[,drle,missing,missing,missing-method
(drle-class), 15
[,matter_arr,ANY,ANY, ANY-method
(matter_arr-class), 23
[,matter_arr-method (matter_arr-class),
23
[,matter_fc,ANY,missing, ANY-method
(matter_fc-class), 28
[,matter_fc,ANY,missing,NULL-method
(matter_fc-class), 28
[,matter_fc-method (matter_fc-class), 28
[,matter_list,ANY,missing,ANY-method
(matter_list-class), 30
[,matter_list,ANY,missing,NULL-method
(matter_list-class), 30
[,matter_list-method
(matter_list-class), 30
[,matter_mat,ANY,ANY, ANY-method
(matter_mat-class), 32
[,matter_mat,ANY,ANY , NULL-method
(matter_mat-class), 32
[,matter_mat-method (matter_mat-class),
32
[,matter_str,ANY,missing, ANY-method
(matter_str-class), 34
[,matter_str,ANY,missing,NULL-method
(matter_str-class), 34
[,matter_str-method (matter_str-class),
34
[,matter_vec,ANY,missing, ANY-method
(matter_vec-class), 36
[,matter_vec,ANY,missing,NULL-method
(matter_vec-class), 36
[,matter_vec-method (matter_vec-class),
36
[,rep_vt,ANY,missing,missing-method
(rep_vt-class), 41
[,rep_vt,missing,missing,missing-method
(rep_vt-class), 41
[,sparse_mat,ANY,ANY, ANY-method
(sparse_mat-class), 43
[,sparse_mat,ANY,ANY NULL-method
(sparse_mat-class), 43
[,sparse_mat-method (sparse_mat-class),
43
[,virtual_df,ANY,ANY,ANY-method
(matter_df-class), 26

INDEX

[,virtual_df,ANY,ANY,NULL-method
(matter_df-class), 26
[,virtual_df-method (matter_df-class),
26
[,virtual_mat,ANY,ANY,ANY-method
(virtual_mat-class), 54
[,virtual_mat,ANY,ANY,NULL-method
(virtual_mat-class), 54
[,virtual_mat,ANY,missing, ANY-method
(virtual_mat-class), 54
[,virtual_mat,ANY,missing,NULL-method
(virtual_mat-class), 54
[,virtual_mat,missing,ANY,ANY-method
(virtual_mat-class), 54
[,virtual_mat,missing,ANY,NULL-method
(virtual_mat-class), 54

[,virtual_mat,missing,missing,ANY-method

(virtual_mat-class), 54
[,virtual_mat-method
(virtual_mat-class), 54
[<-,matter_arr,ANY,ANY, ANY-method
(matter_arr-class), 23
[<-,matter_arr-method
(matter_arr-class), 23
[<-,matter_fc,ANY,missing, ANY-method
(matter_fc-class), 28
[<-,matter_fc-method (matter_fc-class),
28
[<-,matter_list,ANY,missing, ANY-method
(matter_list-class), 30
[<-,matter_list-method
(matter_list-class), 30
[<-,matter_mat,ANY,ANY, ANY-method
(matter_mat-class), 32
[<-,matter_mat-method
(matter_mat-class), 32
[<-,matter_str,ANY,missing, ANY-method
(matter_str-class), 34
[<-,matter_str-method
(matter_str-class), 34
[<-,matter_vec,ANY,missing, ANY-method
(matter_vec-class), 36
[<-,matter_vec-method
(matter_vec-class), 36
[<-,sparse_mat,ANY,ANY, ANY-method
(sparse_mat-class), 43
[<-,sparse_mat-method
(sparse_mat-class), 43

INDEX

[<-,virtual_df,ANY,ANY, ANY-method
(matter_df-class), 26
[<-,virtual_df-method
(matter_df-class), 26
[[,atoms,ANY,ANY-method (matter-class),
20
[[,atoms-method (matter-class), 20
[[,matter_list,ANY,ANY-method
(matter_list-class), 30
[[,rep_vt,ANY,ANY-method
(rep_vt-class), 41
[[,virtual_df,ANY,missing-method
(matter_df-class), 26
[[<-,matter_list,ANY,ANY-method
(matter_list-class), 30
[[<-,virtual_df,ANY,missing-method
(matter_df-class), 26
$,matter_list-method
(matter_list-class), 30
$,virtual_df-method (matter_df-class),
26
$<-,matter_list-method
(matter_list-class), 30
$<-,virtual_df-method
(matter_df-class), 26
%*%,matrix,matter_mat-method
(matter_mat-class), 32
%*%,matrix, sparse_matc-method
(sparse_mat-class), 43
%*%,matrix, sparse_matr-method
(sparse_mat-class), 43
%*%,matrix,virtual_matc-method
(virtual_mat-class), 54
%*%,matrix,virtual_matr-method
(virtual_mat-class), 54
%*%,matter ,matter-method
(matter_mat-class), 32
%*%,matter,numeric-method
(matter_mat-class), 32
%*%,matter_mat,matrix-method
(matter_mat-class), 32
%*%,numeric,matter-method
(matter_mat-class), 32
%*%,sparse_matc,matrix-method
(sparse_mat-class), 43
%*%,sparse_matr,matrix-method
(sparse_mat-class), 43
%*%,virtual_matc,matrix-method

59

(virtual_mat-class), 54
%*%,virtual_matr,matrix-method
(virtual_mat-class), 54

adata (matter-class), 20
adata,matter-method (matter-class), 20
all,matter-method (summary-stats), 49
any,matter-method (summary-stats), 49
apply, 2,2, 3,10, 51
apply,matter_mat-method (apply), 2
apply, sparse_mat-method (apply), 2
apply,virtual_mat-method (apply), 2
Arith, 15
Arith (delayed-ops), 14
Arith,matter_arr,matter_arr-method
(delayed-ops), 14
Arith,matter_arr,numeric-method
(delayed-ops), 14
Arith,matter_fc,matter_fc-method
(delayed-ops), 14
Arith,matter_fc,numeric-method
(delayed-ops), 14
Arith,matter_matc,matter_matc-method
(delayed-ops), 14
Arith,matter_matc,numeric-method
(delayed-ops), 14
Arith,matter_matr,matter_matr-method
(delayed-ops), 14
Arith,matter_matr,numeric-method
(delayed-ops), 14
Arith,matter_vec,matter_vec-method
(delayed-ops), 14
Arith,matter_vec,numeric-method
(delayed-ops), 14
Arith,numeric,matter_arr-method
(delayed-ops), 14
Arith,numeric,matter_fc-method
(delayed-ops), 14
Arith,numeric,matter_matc-method
(delayed-ops), 14
Arith,numeric,matter_matr-method
(delayed-ops), 14
Arith,numeric,matter_vec-method
(delayed-ops), 14
as.array,matter_arr-method
(matter_arr-class), 23
as.array,matter_vec-method
(matter_vec-class), 36

60

as.

as.

as.

as.

as.

as.

as.

as.

as.

as.

as.

as.

as.
as.

as.

as.

as.

as.

as.

as.

as.

as

as.

as.

as.

character,matter_str-method
(matter_str-class), 34
character,matter_vec-method
(matter_vec-class), 36
data.frame,atoms-method
(matter-class), 20
data.frame,matter_df-method
(matter_df-class), 26
data.frame,virtual_df-method
(matter_df-class), 26
factor,matter_fc-method
(matter_fc-class), 28
integer,matter_arr-method
(matter_arr-class), 23
integer,matter_mat-method
(matter_mat-class), 32
integer,matter_vec-method
(matter_vec-class), 36

list,atoms-method (matter-class), 20
list,drle-method (drle-class), 15

list,matter_list-method
(matter_list-class), 30

list,rep_vt-method (rep_vt-class), 41

logical,matter_arr-method
(matter_arr-class), 23
logical,matter_mat-method
(matter_mat-class), 32
logical,matter_vec-method
(matter_vec-class), 36
matrix,matter_arr-method
(matter_arr-class), 23
matrix,matter_mat-method
(matter_mat-class), 32
matrix,matter_vec-method
(matter_vec-class), 36
matrix, sparse_mat-method
(sparse_mat-class), 43
matrix,virtual_mat-method
(virtual_mat-class), 54

.matter (matter-class), 20
as.

numeric,matter_arr-method
(matter_arr-class), 23
numeric,matter_mat-method
(matter_mat-class), 32
numeric,matter_vec-method
(matter_vec-class), 36
raw,matter_arr-method
(matter_arr-class), 23

INDEX

as.raw,matter_mat-method
(matter_mat-class), 32
as.raw,matter_vec-method
(matter_vec-class), 36
as.sparse (sparse_mat-class), 43
as.vector,drle-method (drle-class), 15
as.vector,matter_arr-method
(matter_arr-class), 23
as.vector,matter_mat-method
(matter_mat-class), 32
as.vector,matter_str-method
(matter_str-class), 34
as.vector,matter_vec-method
(matter_vec-class), 36
as.vector,rep_vt-method (rep_vt-class),
41
as.virtual (virtual_mat-class), 54
atomdata (matter-class), 20
atomdata,matter-method (matter-class),
20
atomdata<- (matter-class), 20
atomdata<-,matter-method
(matter-class), 20

bigglm, 4, 5, 39

bigglm (biglm), 4

bigglm,formula,matter_mat-method
(biglm), 4

bigglm,formula, sparse_mat-method
(biglm), 4

bigglm,formula,virtual_df-method
(biglm), 4

bigglm, formula,virtual_mat-method
(biglm), 4

biglm, 4, 4

biglm,formula,virtual_df-method
(biglm), 4

binvec, 5

bplapply, 3,9, 12, 18

bsearch, 6

c,atoms-method (matter-class), 20

c,drle-method (drle-class), 15

c,matter-method (matter-class), 20

c,matter_vec-method (matter_vec-class),
36

cbind,matter-method (matter_mat-class),
32

checksum, 7

INDEX

checksum,matter-method (checksum), 7

chunk_apply, 8

chunk_mapply (chunk_apply), 8

chunksize (matter-class), 20

chunksize,matter-method (matter-class),
20

chunksize<- (matter-class), 20

chunksize<-,matter-method
(matter-class), 20

chunksize<-,matter_vt-method
(matter-class), 20

class:drle (drle-class), 15

class:matter (matter-class), 20

class:matter_arr (matter_arr-class), 23

class:matter_df (matter_df-class), 26

class:matter_fc (matter_fc-class), 28

class:matter_list (matter_list-class),
30

class:matter_mat (matter_mat-class), 32

class:matter_str (matter_str-class), 34

class:matter_vec (matter_vec-class), 36

class:rep_vt (rep_vt-class), 41

class:sparse_mat (sparse_mat-class), 43

class:virtual_df (matter_df-class), 26

class:virtual_mat (virtual_mat-class),
54

class:virtual_tbl (matter_df-class), 26

colMeans, 3

colMeans,matter_mat-method
(summary-stats), 49

colSds (summary-stats), 49

colSds,matter_mat-method
(summary-stats), 49

colStats, 11

colStats,ANY-method (colStats), 11

colStats,matter_matr-method (colStats),
11

colStats, sparse_matr-method (colStats),
11

colStats,virtual_matr-method
(colStats), 11

colstreamStats, /2

colstreamStats (stream-stats), 46

colSums, 12

colSums,matter_mat-method
(summary-stats), 49

colVars (summary-stats), 49

colVars,matter_mat-method

61

(summary-stats), 49
combine, 13
combine, ANY, ANY-method (combine), 13
combine,atoms,ANY-method
(matter-class), 20
combine,drle,drle-method (drle-class),
15
combine,drle,numeric-method
(drle-class), 15
combine,matter_fc,ANY-method
(matter_fc-class), 28
combine,matter_list,ANY-method
(matter_list-class), 30
combine,matter_str,ANY-method
(matter_str-class), 34
combine,matter_vec, ANY-method
(matter_vec-class), 36
combine,numeric,drle-method
(drle-class), 15
combine,stream_stat,ANY-method
(stream-stats), 46
combiner, 13
combiner, sparse_mat-method
(sparse_mat-class), 43
combiner<- (combiner), 13
combiner<-,sparse_mat-method
(sparse_mat-class), 43
Compare, 15
Compare (delayed-ops), 14
Compare, character,matter_fc-method
(delayed-ops), 14
Compare, factor,matter_fc-method
(delayed-ops), 14
Compare,matter_arr,matter_arr-method
(delayed-ops), 14
Compare,matter_arr,numeric-method
(delayed-ops), 14
Compare,matter_arr,raw-method
(delayed-ops), 14
Compare,matter_fc,character-method
(delayed-ops), 14
Compare,matter_fc, factor-method
(delayed-ops), 14
Compare,matter_fc,matter_fc-method
(delayed-ops), 14
Compare,matter_fc,numeric-method
(delayed-ops), 14
Compare,matter_matc,matter_matc-method

62

(delayed-ops), 14
Compare,matter_matc,numeric-method
(delayed-ops), 14
Compare,matter_matc,raw-method
(delayed-ops), 14
Compare,matter_matr,matter_matr-method
(delayed-ops), 14
Compare,matter_matr,numeric-method
(delayed-ops), 14
Compare,matter_matr,raw-method
(delayed-ops), 14
Compare,matter_vec,matter_vec-method
(delayed-ops), 14
Compare,matter_vec,numeric-method
(delayed-ops), 14
Compare,matter_vec,raw-method
(delayed-ops), 14
Compare,numeric,matter_arr-method
(delayed-ops), 14
Compare,numeric,matter_fc-method
(delayed-ops), 14
Compare,numeric,matter_matc-method
(delayed-ops), 14
Compare,numeric,matter_matr-method
(delayed-ops), 14
Compare,numeric,matter_vec-method
(delayed-ops), 14
Compare,raw,matter_arr-method
(delayed-ops), 14
Compare,raw,matter_matc-method
(delayed-ops), 14
Compare,raw,matter_matr-method
(delayed-ops), 14
Compare, raw,matter_vec-method
(delayed-ops), 14
crossprod, ANY,matter-method
(matter_mat-class), 32
crossprod,matter, ANY-method
(matter_mat-class), 32

datamode (matter-class), 20

datamode, atoms-method (matter-class), 20

datamode,matter-method (matter-class),
20

datamode<- (matter-class), 20

datamode<-,atoms-method (matter-class),
20

datamode<-,matter-method
(matter-class), 20

INDEX

datamode<-,matter_vt-method
(matter-class), 20
datamode<-, sparse_mat-method
(sparse_mat-class), 43
datamode<-,virtual_mat-method
(virtual_mat-class), 54
datatypes (matter-datatypes), 22
delayed-ops, 14
digest, 8
dim,atoms-method (matter-class), 20
dim,matter-method (matter-class), 20
dim,matter_list-method
(matter_list-class), 30
dim<-,matter-method (matter-class), 20
dim<-,matter_arr-method
(matter_arr-class), 23
dim<-,matter_mat-method
(matter_mat-class), 32
dim<-,matter_vec-method
(matter_vec-class), 36
dimnames,matter-method (matter-class),
20
dimnames<-,matter,ANY-method
(matter-class), 20
dimnames<-,virtual_tbl, ANY-method
(matter_df-class), 26
drle, 16
drle (drle-class), 15
drle-class, 15

exp,matter_arr-method (delayed-ops), 14
exp,matter_fc-method (delayed-ops), 14
exp,matter_mat-method (delayed-ops), 14
exp,matter_vec-method (delayed-ops), 14

filemode (matter-class), 20

filemode,matter-method (matter-class),
20

filemode<- (matter-class), 20

filemode<-,matter-method
(matter-class), 20

filemode<-,matter_vt-method
(matter-class), 20

findInterval, 7

gc, 40

head,virtual_tbl-method
(matter_df-class), 26

INDEX

hex2raw (uuid), 52

irlba, 38, 39

is.drle (drle-class), 15

is.matter (matter-class), 20
is.sparse (sparse_mat-class), 43
is.virtual (virtual_mat-class), 54

keys, 17

keys, sparse_mat-method
(sparse_mat-class), 43

keys<- (keys), 17

keys<-, sparse_mat-method
(sparse_mat-class), 43

keys<-, sparse_matc-method
(sparse_mat-class), 43

keys<-, sparse_matr-method
(sparse_mat-class), 43

lapply, 10, 17,17, 18
lapply,matter_list-method (lapply), 17
lapply,virtual_df-method (lapply), 17
length,atoms-method (matter-class), 20
length,drle-method (drle-class), 15
length,matter-method (matter-class), 20
length, rep_vt-method (rep_vt-class), 41
length<-,matter-method (matter-class),
20

lengths,matter-method (matter-class), 20

lengths,matter_list-method
(matter_list-class), 30
lengths,matter_str-method
(matter_str-class), 34
levels,matter_fc-method
(matter_fc-class), 28
levels<-,matter_fc-method
(matter_fc-class), 28
locmax, 19
log,matter_arr,numeric-method
(delayed-ops), 14
log,matter_arr-method (delayed-ops), 14
log,matter_fc,numeric-method
(delayed-ops), 14
log,matter_fc-method (delayed-ops), 14
log,matter_matc,numeric-method
(delayed-ops), 14

log,matter_matc-method (delayed-ops), 14

log,matter_matr,numeric-method
(delayed-ops), 14

63

log,matter_matr-method (delayed-ops), 14
log,matter_vec,numeric-method
(delayed-ops), 14
log,matter_vec-method (delayed-ops), 14
log10,matter_arr-method (delayed-ops),
14
log10,matter_fc-method (delayed-ops), 14
log10,matter_mat-method (delayed-ops),
14
log10,matter_vec-method (delayed-ops),
14
log2,matter_arr-method (delayed-ops), 14
log2,matter_fc-method (delayed-ops), 14
log2,matter_mat-method (delayed-ops), 14
log2,matter_vec-method (delayed-ops), 14
Logic, 15
Logic (delayed-ops), 14
Logic,logical,matter_arr-method
(delayed-ops), 14
Logic,logical,matter_matc-method
(delayed-ops), 14
Logic,logical,matter_matr-method
(delayed-ops), 14
Logic,logical,matter_vec-method
(delayed-ops), 14
Logic,matter_arr,logical-method
(delayed-ops), 14
Logic,matter_arr,matter_arr-method
(delayed-ops), 14
Logic,matter_matc,logical-method
(delayed-ops), 14
Logic,matter_matc,matter_matc-method
(delayed-ops), 14
Logic,matter_matr,logical-method
(delayed-ops), 14
Logic,matter_matr,matter_matr-method
(delayed-ops), 14
Logic,matter_vec,logical-method
(delayed-ops), 14
Logic,matter_vec,matter_vec-method
(delayed-ops), 14

mapply, 10

match, 7

Math, 15

matter, 3, 4, 8, 14, 18, 20, 25, 27, 29, 31, 33,
34, 36, 38, 39, 45, 46, 49, 50, 55

matter (matter-class), 20

matter-class, 20

64

matter-datatypes, 22
matter-options, 23

matter_arr, 21,24

matter_arr (matter_arr-class), 23
matter_arr-class, 23
matter_df, 4, 21, 26

matter_df (matter_df-class), 26
matter_df-class, 26

matter_fc, 21, 28

matter_fc (matter_fc-class), 28
matter_fc-class, 28
matter_list, 17,21, 30, 49
matter_list (matter_list-class), 30
matter_list-class, 30
matter_mat, 2—4, 21, 33, 38, 42
matter_mat (matter_mat-class), 32
matter_mat-class, 32

matter_matc, 3

matter_matc (matter_mat-class), 32
matter_matc-class (matter_mat-class), 32
matter_matr, 3

matter_matr (matter_mat-class), 32
matter_matr-class (matter_mat-class), 32
matter_str, 2/, 35

matter_str (matter_str-class), 34
matter_str-class, 34
matter_vec, 21, 29, 37

matter_vec (matter_vec-class), 36
matter_vec-class, 36
max,matter-method (summary-stats), 49
mean (summary-stats), 49
mean,matter-method (summary-stats), 49
mem (profmem), 40

min,matter-method (summary-stats), 49

names,matter-method (matter-class), 20

names<-,matter-method (matter-class), 20

names<-,virtual_tbl-method
(matter_df-class), 26

Ops, 15
Ops (delayed-ops), 14

path,matter-method (matter-class), 20
path<-,matter-method (matter-class), 20
paths (matter-class), 20
paths,matter-method (matter-class), 20
paths<- (matter-class), 20
paths<-,matter-method (matter-class), 20

INDEX

paths<-,matter_vt-method
(matter-class), 20

pmatch, 7

prcomp, 38, 39

prcomp,matter_mat-method (prcomp), 38

prod,matter-method (summary-stats), 49

profmem, 40

pull (matter-class), 20

push (matter-class), 20

range,matter-method (summary-stats), 49

raw2hex (uuid), 52

rbind,matter-method (matter_mat-class),
32

readonly (matter-class), 20

readonly,matter-method (matter-class),
20

readonly<- (matter-class), 20

readonly<-,matter-method
(matter-class), 20

readonly<-,matter_vt-method
(matter-class), 20

rep, 41

rep_vt, 41

rep_vt (rep_vt-class), 41

rep_vt-class, 41

rle, 16

rowMeans, 3

rowMeans,matter_mat-method
(summary-stats), 49

rowSds (summary-stats), 49

rowSds,matter_mat-method
(summary-stats), 49

rowStats (colStats), 11

rowStats,ANY-method (colStats), 11

rowStats,matter_matc-method (colStats),
11

rowStats, sparse_matc-method (colStats),
11

rowStats,virtual_matc-method
(colStats), 11

rowstreamStats, /2

rowstreamStats (stream-stats), 46

rowSums,matter_mat-method
(summary-stats), 49

rowVars (summary-stats), 49

rowVars,matter_mat-method
(summary-stats), 49

INDEX

s_all (stream-stats), 46

s_any (stream-stats), 46

s_max (stream-stats), 46

s_mean (stream-stats), 46

s_min (stream-stats), 46

s_nnzero (stream-stats), 46

s_prod (stream-stats), 46

s_range (stream-stats), 46

s_sd (stream-stats), 46
s_sum(stream-stats), 46

s_var (stream-stats), 46

sapply (lapply), 17
sapply,matter_list-method (lapply), 17
sapply,virtual_df-method (lapply), 17
scale, 42,42, 43
scale,matter_mat-method (scale), 42
scale.matter (scale), 42

sd (summary-stats), 49
sd,matter-method (summary-stats), 49
sparse_mat, 2, 14, 17,44, 52

sparse_mat (sparse_mat-class), 43
sparse_mat-class, 43

sparse_matc (sparse_mat-class), 43
sparse_matc-class (sparse_mat-class), 43
sparse_matr (sparse_mat-class), 43
sparse_matr-class (sparse_mat-class), 43
stat_c (stream-stats), 46
stream-stats, 46

stream_stat, 5/

stream_stat (stream-stats), 46
struct, 48

sum,matter-method (summary-stats), 49
Summary, 48

Summary (summary-stats), 49
summary-stats, 49

t,matter_matc-method
(matter_mat-class), 32
t,matter_matr-method
(matter_mat-class), 32
t,matter_vec-method (matter_vec-class),
36
t, sparse_matc-method
(sparse_mat-class), 43
t,sparse_matr-method
(sparse_mat-class), 43
t,virtual_mat-method
(virtual_mat-class), 54
t.matter (matter_mat-class), 32

65

tail,virtual_tbl-method
(matter_df-class), 26
tcrossprod, ANY,matter-method
(matter_mat-class), 32
tcrossprod, matter, ANY-method
(matter_mat-class), 32
tempfile, 24, 28, 30, 32, 35, 37
tolerance, 52
tolerance, sparse_mat-method
(sparse_mat-class), 43
tolerance<- (tolerance), 52
tolerance<-, sparse_mat-method
(sparse_mat-class), 43

uuid, 52

var (summary-stats), 49

var,matter-method (summary-stats), 49

virtual_df, 26

virtual_df (matter_df-class), 26

virtual_df-class (matter_df-class), 26

virtual_mat, 2, 54

virtual_mat (virtual_mat-class), 54

virtual_mat-class, 54

virtual_matc (virtual_mat-class), 54

virtual_matc-class (virtual_mat-class),
54

virtual_matr (virtual_mat-class), 54

virtual_matr-class (virtual_mat-class),
54

virtual_tbl-class (matter_df-class), 26

which,matter-method (matter-class), 20

	apply
	biglm
	binvec
	bsearch
	checksum
	chunk_apply
	colStats
	combine
	combiner
	delayed-ops
	drle-class
	keys
	lapply
	locmax
	matter-class
	matter-datatypes
	matter-options
	matter_arr-class
	matter_df-class
	matter_fc-class
	matter_list-class
	matter_mat-class
	matter_str-class
	matter_vec-class
	prcomp
	profmem
	rep_vt-class
	scale
	sparse_mat-class
	stream-stats
	struct
	summary-stats
	tolerance
	uuid
	virtual_mat-class
	Index

