
Hands-On: A Framework for Oligonucleotide

Microarrays Preprocessing

Benilton S. Carvalho Rafael A. Irizarry

This document provides examples on the usage of the oligo package. The datasets used

here can be downloaded by the user, who is expected to have the CEL and XYS files in the

following directory structure:

Directory Name Object Name Description
expressionDataa affyExpressionFS Latin Square - Affymetrix U95A

exonDatab affyExonFS Exon Sample Dataset - Human
snpDatac affySnpFS HapMap samples on XBA Array

tilingDatad nimbleTilingFS Sample ChIP-chip dataset

Table 1: Directory structure used in this document to store CEL and XYS files.

ahttp://www.affymetrix.com/support/technical/sample_data/datasets.affx
bhttp://www.affymetrix.com/support/technical/sample_data/exon_array_data.affx
chttp://hapmap.ncbi.nlm.nih.gov/downloads/raw_data/affy100k/
dData available upon request and provided by NimbleGen

1 Preprocessing Expression Arrays

The dataset used in this example corresponds to the Latin Square Data for Expression

Algorithm Assessment on the Human Genome U95 platform, made available by Affymetrix

on their website1. To be used with oligo, requires the availability of the pd.hg.u95a annotation

package, built with the pdInfoBuilder package.

1http://www.affymetrix.com/support/technical/sample_data/datasets.affx

1

http://www.affymetrix.com/support/technical/sample_data/datasets.affx
http://www.affymetrix.com/support/technical/sample_data/exon_array_data.affx
http://hapmap.ncbi.nlm.nih.gov/downloads/raw_data/affy100k/
http://www.affymetrix.com/support/technical/sample_data/datasets.affx

After the annotation package is installed, the next step is to load oligo and identify the

files to be used in the analysis. The list.celfiles function can be used to appropriately

list Affymetrix CEL files. Similarly, the list.xysfiles can be used with NimbleGen XYS

files. Both functions are built on top of list.files, therefore taking the same arguments

as the latter, allowing more advanced use when necessary. Below, the celFiles contains the

all the CEL file names, with full path, in the expressionData directory.
R> library(oligo)

R> celFiles <- list.celfiles("expressionData", full.names = TRUE)

Importing the CEL files is achieved with the read.celfiles function. An analogous

function, read.xysfiles, is available for NimbleGen data, which is delivered via XYS files.

Both functions will, in general, correctly identify the annotation package to be used with the

experimental data being imported, but the user can specify the pkgname argument to force

the use of a particular one, if for some reason this is required.
R> affyExpressionFS <- read.celfiles(celFiles, pkgname = "pd.hg.u95a")

The object affyExpressionFS belongs to the ExpressionFeatureSet class, as it corre-

sponds to expression data. The object, like all FeatureSet-like objects, represents features

in the rows and samples in the columns and can be easily subsetted, using the standard [

operator. All the manipulation structure is inherited through te tight integration between

oligo and Biobase, whose documentation we recommend to the interested reader.
R> class(affyExpressionFS)

[1] "ExpressionFeatureSet"

attr(,"package")

[1] "oligoClasses"

Figure 1 demonstrates how the image method can be used to generate pseudo-images of

the samples. In this particular plot, we use the first sample as an example.
R> image(affyExpressionFS[, 1], col = gray((64:0)/64))

The user can evaluate the distribution of the observed data by using the hist method,

which will produce smoothed histograms for each sample available in the dataset. Before

plotting, the method transforms the data using the function passed to the transfo argument,

whose default is log2, explaining why the plot is shown on the log2 scale.

2

Figure 1: Pseudo-image, used for visual assessment of the array, for sample
1521a99hpp_av06.CEL.

R> hist(affyExpressionFS, col = darkColors(59), lty = 1,

xlim = c(6, 12))

Figure 2: Smoothed histograms for samples in the dataset.

Another approach to assess the data distribution is to use the boxplot method. On the

example below, we use only the first 10 samples in the dataset to simplify the visualization.

On FeatureSet objects, the method will automatically transform the data to the log2 scale,

3

but this is easily modified through the transfo argument, which takes a function as a valid

value.
R> boxplot(affyExpressionFS[, 1:10], col = darkColors(10),

names = 1:10)

Figure 3: Boxplot showing the distribution of the observed log2-intensities on the sample
dataset. The boxplot method implemented in oligo follows the standards of the original
method used by R.

Plotting log-ratio versus average intensity can often reveal intensity effects on log-ratios,

as shown by the MA plot on Figure 4. The argument arrays can be specified to determine

which samples will be plotted and the lowessPlot is a logical flag to indicate that the user

wants a lowess curve to be overlapped to the data points.
R> MAplot(affyExpressionFS, arrays = 1, lowessPlot = TRUE,

ylim = c(-1, 1))

The annotation packages used by oligo store feature sequences. This is done through

instances of DNAStringSet objects implemented in the Biostrings package. The sequences

for PM probes can be easily accessed via the pmSequence function, as shown below.
R> pmSeq <- pmSequence(affyExpressionFS)

R> pmSeq[1:5]

A DNAStringSet instance of length 5

width seq

[1] 25 GCTGCCCACAGTGACCGACCAGGAG

[2] 25 GCAGCCACCAGTGGACCTAGCCTGG

4

Figure 4: The MA plot can be used to assess the dependence of log-ratios on average log-
intensities.

[3] 25 CAGCCACCAGTGGACCTAGCCTGGA

[4] 25 CGCATCCACGTGAACTTGAGCACTG

[5] 25 GGCTTCACAGTCACTCGGCTCAGTG

When importing the data, oligo does not impose any transformation, so one needs to

manually apply, for example, the log2 transform to the intensities of PM probes, which can

be accessed with the pm function, as needed. Below, we present how to centralize the log2-PM

intensities for each sample in affyExpressionFS.
R> pmsLog2 <- log2(pm(affyExpressionFS))

The dependence of intensity on probe sequence is a well established fact on the microarray

literature. The use of the oligo package simplifies significantly the observation of this event,

as it provides simple access to both observed intensities and annotation. Below, we estimate

the affinity splines coefficients (Wu et al., 2004).
R> coefs <- getAffinitySplineCoefficients(pmsLog2, pmSeq)

On Figure 5, we show how the results above can be used to estimate the base-position

effects on the log2-intensities observed for the first sample in the dataset. The getBasePro-

file function provides a simple way of using the affinity coefficients to estimate the effects

of interest. It accepts a plot argument, which takes logical values, to make the plot and re-

5

turns, invisibly, the estimated effects. All the arguments that can be passed to the matplot

function can also be passed to getBaseProfile.
R> colors <- darkColors(4)

R> xL <- "Base Position"

R> yL <- "Effect"

R> pchs <- c("A", "C", "G", "T")

R> getBaseProfile(coefs[, 1], plot = TRUE, pch = pchs, type = "b",

xlab = xL, ylab = yL, lwd = 3, col = colors, ylim = c(-0.4,

0.4))

Figure 5: Sequence effect for the first sample in the dataset. These results have been reported
in detail elsewhere, but can be easily reproduced with the use of the oligo package.

Tools implemented in other packages can be used in conjunction with oligo to investi-

gate different hypothesis. The example below shows how the alphabetFrequency function,

defined by the Biostrings can be used to determine the GC content of the probe sequences

accessed by oligo.
R> counts <- Biostrings::alphabetFrequency(pmSeq, baseOnly = TRUE)

R> GCcontent <- ordered(counts[, "G"] + counts[, "C"])

In addition to Figure 5, we can also plot the log2-intensities as a function of the GC

content computed above. Figure 6 presents the strong dependency of log2-intensities on GC

contents for sample 1, which is also present in all other samples.
R> colors <- seqColors(nlevels(GCcontent))

R> xL <- "GC Frequency in 25-mers"

6

R> yL <- expression(log[2] ~ intensity)

R> boxplot(pmsLog2[, 1] ~ GCcontent, xlab = xL, ylab = yL,

range = 0, col = colors)

Figure 6: On this boxplot stratified by GC content, we can observe the strong dependency
of log2-intensities on the number of G or C bases observed in the probe sequency.

To preprocess expression data, oligo implements the RMA algorithm (Irizarry et al.,

2003a,b). The rma method, as shown below, proceeds with background subtraction, nor-

malization and summarization using median polish.
R> ppData <- rma(affyExpressionFS)

The results are returned in an ExpressionSet instance and used in downstream analyses,

as currently done by several strategies for microarray data analysis and described elsewhere.
R> class(ppData)

[1] "ExpressionSet"

attr(,"package")

[1] "Biobase"

At this point, the user can proceed with, for example, differential expression analyses.

The methodologies involved in this step make use of several other packages, like limma

and genefilter. When preprocessing the data, oligo stores the summaries in a matrix called

exprs, present in the assayData data slot of the ExpressionSet object. Therefore, the only

restriction the additional strategies used with the preprocessed data have is to be aware that

7

the processed data can be easily accessed with the exprs method.

2 Obtaining Genotype Calls from SNP Arrays

The oligo package can genotype, using the CRLMM algorithm, several Affymetrix SNP

arrays. To do so, the user will need, in addition to the oligo package, an annotation data

package specific to the designed used in the experiment. Although these annotation packages

are created using the pdInfoBuilder package, the CRLMM algorithm requires additional hand-

curated data, which are included in the packages made available through the BioConductor

website. Table 2 describes the supported designs and the respective annotation packages.

Design Annotation Package
Mapping 50K XBA pd.mapping50k.xba240
Mapping 50K HIND pd.mapping50k.hind240
Mapping 250K NSP pd.mapping250k.nsp
Mapping 250K STY pd.mapping250k.sty
Genomewide SNP 5.0 pd.genomewidesnp.5
Genomewide SNP 6.0 pd.genomewidesnp.6

Table 2: SNP array designs currently supported by the oligo package and their respective an-
notation packages. These annotation packages are made available through the BioConductor
website and contain hand-curated data, required by the CRLMM algorithm.

As an example, we will use the 269 CEL files, on the XBA array, available on the HapMap

website2, which were downloaded and saved, uncompressed, to a subdirectory called snpData.

Therefore, we need to instruct the software to look for the files at the correct location. An

output directory should also be defined and that is the place where the summary files,

including genotype calls and confidences are stored. This output directory, which we chose

to call crlmmResults, must not exist prior to the CRLMM call, the software will take care

of this task.
R> library("oligo")

R> fullFilenames <- list.celfiles("snpData", full.names = TRUE)

R> outputDir <- file.path(getwd(), "crlmmResults")

2http://www.hapmap.org

8

http://www.hapmap.org

Given the always increasing density of the SNP arrays, we developed efficient methods to

process these chips, reducing the required amount of memory even for large studies. Using

this approach, we process batches of SNPs at a time, saving partial results to disk. We

refer the interested reader to Carvalho et al. (2007) for detailed information on the CRLMM

algorithm. The genotyping strategy, in summary, has three steps: A) quantile normalizes

against a known reference distribution; B) summarizes the data to the SNP-allele level using

median polish; C) uses estimated parameters to classify the samples in genotype groups using

Mahalanobis distance.

The summaries are average intensities and log-ratios, defined as across allele and within

strand, ie:

As =
θA,s + θB,s

2
(1)

Ms = θA,s − θB,s, (2)

where s defines the strand (antisense or sense). On the genomewide designs, SNP 5.0 and

6.0, the strand information is dropped. These summaries can be obtained via getA and getM

methods, which return arrays with dimensions corresponding to SNPs, samples and strands

(if applicable), respectively. These measures are later used for genotyping.

CRLMM involves running an EM algorithm to adjust for average intensity and fragment

length in the log-ratio scale. These adjustments may take long time to run, depending on

the combination of number of samples and computer resources available. Below, we show

the simplest way to call CRLMM, which requires only the file names and output directory.
R> if (!file.exists(outputDir)) crlmm(fullFilenames, outputDir)

The crlmm method does not return an object to the R session. Instead, it saves the

objects to disk, as not all systems are guaranteed to meet the memory requirements that

SnpSuperSet objects might need. For the user’s convenience, the getCrlmmSummaries will

read the information from disk and make a SnpCallSetPlus or SnpCnvCallSetPlus object

available to the user.

9

R> crlmmOut <- getCrlmmSummaries(outputDir)

R> calls(crlmmOut[1:5, 1:2])

NA06985.CEL NA06991.CEL

SNP_A-1507972 3 3

SNP_A-1510136 3 3

SNP_A-1511055 3 3

SNP_A-1518245 2 3

SNP_A-1641749 3 3

R> confs(crlmmOut[1:5, 1:2])

NA06985.CEL NA06991.CEL

SNP_A-1507972 0.0009994257 0.0009994060

SNP_A-1510136 0.0009993050 0.0009993744

SNP_A-1511055 0.0009994257 0.0009994257

SNP_A-1518245 0.0009990034 0.0009994257

SNP_A-1641749 0.0009984230 0.0009970634

The genotype calls are represented by 1 (AA), 2 (AB) and 3 (BB). The confidence is the

predicted probability that the algorithm made the right call.

Summaries generated by the algorithm can also be accessed from the R session. The

options for summaries are ”alleleA”, ”alleleB”, ”alleleA-sense”, ”alleleA-antisense”, ”alleleB-

sense”, ”alleleB-antisense”. The options ”alleleA” and ”alleleB” are only available for SNP

5.0 and SNP 6.0 platforms. The other options are to be used with 50K and 250K arrays.

Below, we choose two SNPs to show the different configurations of the genotype groups.
R> snps <- paste("SNP_A-", c(1703121, 1725330), sep = "")

R> LIM <- c(-4, 4)

Figure 7(a) represents a SNP for which genotyping is simplified by the good discrimination

of both strands. Figure 7(b) shows a SNP for which features on the antisense strand have

very good discrimination power, while no information (for classification) can be extracted

from the sense strand.

R> gtypes <- as.integer(calls(crlmmOut[snps[1],]))

R> plotM(crlmmOut, snps[1], ylim = LIM, xlim = LIM, col = gtypes)

R> gtypes <- as.integer(calls(crlmmOut[snps[2],]))

R> plotM(crlmmOut, snps[2], ylim = LIM, xlim = LIM, col = gtypes)

CRLMM was shown to outperform competing genotyping tools. We refer the reader to

Lin et al. (2008) for further details on this subject. The genotypes provided by CRLMM,

10

(a) SNP A-1703121 has very good discrimination
on both strands and, as competing algorithms,
CRLMM has excelent performance on scenarios
like this. On this plot, genotype calls provided
by oligo are represented in different colors (black:
AA; red: AB; green: BB)

(b) SNP A-1725330 presents poor discrimination
on the sense strand. Because CRLMM does not
average across strands, it can perfectly predict the
genotype cluster each sample belongs to. On sim-
ilar scenarios, competing algorithms are known to
fail. Color scheme follows Figure 7(a).

and in this example stored in crlmmOut, can be easily used with other BioConductor tools,

like the snpMatrix package, for downstream analyses.

3 Preprocessing Exon Arrays

On this section, we use colon cancer sample data for exon arrays, available on the Affymetrix

website3, to demonstrate the use of the oligo package to import and preprocess these data.

The CEL files were downloaded to the exonData directory and, after loading the package,

we use the celFiles variable to store the full CEL file names (including path), as shown

below.
R> library(oligo)

R> celFiles <- list.celfiles("exonData", full.names = TRUE)

3http://www.affymetrix.com/support/technical/sample_data/exon_array_data.affx

11

http://www.affymetrix.com/support/technical/sample_data/exon_array_data.affx

The read.celfiles function is used to import CEL files. Its simplest use is shown

below. In this example, the parser will read all CEL files present in the exonData directory

and store the results in the exonRawData variable.
R> affyExonFS <- read.celfiles(celFiles)

As already noted, oligo implements different classes depending on the nature of the data.

Therefore, affyExonFS is an ExonFeatureSet object. This is a especially interesting feature,

as it allows methods to behave differently depending on the object class.

Generally, RMA will background correct, quantile normalize and summarize to the probe-

set level, as defined in the annotation packages. When working with an ExonFeatureSet

object, processing to the probeset level provides expression summaries at the exon level and

can be obtained by setting the argument target to "probeset", as presented below.
R> probesetSummaries <- rma(affyExonFS, target = "probeset")

For Exon arrays, Affymetrix provides additional annotation files that define meta-probesets

(MPSs), used to summarize the data to the gene level. These MPSs are classified in three

groups – core, extended and full – depending on the level of confidence of the sources used

to generate such annotations. Additional values allowed for the target argument are "core",

"extended" and "full". The example below shows how gene level summaries can be ob-

tained through oligo.
R> geneSummaries <- rma(affyExonFS, target = "core")

The results obtained from analyses performed with oligo can be easily combined with fea-

tures offered by other packages. As an example, we use the biomaRt package to obtain IDs of

probesets on the Human Exon array that map to Entrez Gene ID 10948 (ENSG00000131748).
R> library(biomaRt)

R> ensembl <- useMart("ensembl", dataset = "hsapiens_gene_ensembl")

R> theIDs <- getBM(attributes = "affy_huex_1_0_st_v2", filters = "entrezgene",

values = 10948, mart = ensembl)[[1]]

R> theIDs <- as.character(theIDs)

Combining this information with the annotation package associated to the data in affyEx-

onFS, we can get detailed facts on the probesets found to map to Entrez Gene ID 10948.

Below, we obtain, respectively, the MPS IDs, probeset IDs, probe IDs and start/stop posi-

12

tions for the probesets identified above.
R> library(AnnotationDbi)

R> conn <- db(affyExonFS)

R> sql <- paste("SELECT meta_fsetid, pmfeature.fsetid, fid, start, stop",

"FROM featureSet, pmfeature, core_mps", "WHERE pmfeature.fsetid = featureSet.fsetid",

"AND featureSet.fsetid = core_mps.fsetid", "AND pmfeature.fsetid IN (",

toSQLStringSet(theIDs), ")")

R> probesetInfo <- dbGetQuery(conn, sql)

The availability of start and stop positions of the probesets improves the visualization of

the summaries at the exon level. If genomic coordinates were available for probes themselves,

visualization could be improved even more. To achieve this, we first obtain the sequences for

the probes identified above. We saw that the pmSequence method provides the sequences

for all PM probes identified on the chip but, instead, we directly load the Biostrings object

used to store the sequence information for these probes. This gives us access not only to the

sequences, but also to the probe IDs linked to them.
R> library(Biostrings)

R> data(pmSequence, package = annotation(affyExonFS))

Because probe IDs are available in the pmSequence object, we can easily restrict our

search to the probes listed in the probesetInfo object.
R> idx <- match(probesetInfo[["fid"]], pmSequence[["fid"]])

R> pmSequence <- pmSequence[idx,]

The pmSequence object behaves like a data.frame, but it is comprised of complex data

structures defined in Biostrings. Below, we modify its representation to make it a regular

data.frame object.
R> pmSequence <- data.frame(fid = pmSequence[["fid"]], sequence = as.character(pmSequence[["sequence"]]),

stringsAsFactors = FALSE)

By joining the probesetInfo and pmSequence objects, we centralize the available probe

annotation.
R> probeInfo <- merge(probesetInfo, pmSequence)

The genomic coordinates in probeInfo refer to the probesets. To better visualize the

observed probe intensities, we would be better off if the coordinates were relative to the

probes. Below, we use the BSgenome.Hsapiens.UCSC.hg18 to obtain up-to-date genomic

coordinates. The coordinates are found by aligning the probe sequences to the reference

13

genome made available through the package. Because Entrez Gene ID 10948 is located on

chromosome 17, the search is limited to this region.
R> library("BSgenome.Hsapiens.UCSC.hg18")

R> chr17 <- Hsapiens[["chr17"]]

R> seqs <- complement(DNAStringSet(probeInfo[["sequence"]]))

R> seqs <- PDict(seqs)

R> matches <- matchPDict(seqs, chr17)

After matching the sequences, we update the genomic coordinates.
R> probeInfo[["start"]] <- unlist(startIndex(matches))

R> probeInfo[["stop"]] <- unlist(endIndex(matches))

With the updated coordinates, we reorder the probe information object, probeInfo, and

extract the probe intensities in the same order. The probe ID field, fid in probeInfo, pro-

vides direct access to the probes of interest. The exprs method is used to access the intensity

matrix of the affyExonFS object and immediately subsetted to the probes of interest. After

subsetting the observed intensities, we log2-transform the data.
R> probeInfo <- probeInfo[order(probeInfo[["start"]]),]

R> probeData <- exprs(affyExonFS)[probeInfo[["fid"]],]

R> probeData <- log2(probeData)

We use the updated genomic to estimate the probeset coverage. This information will be

used when plotting the data and will provide approximate delimiters of the probesets.
R> attach(probeInfo)

R> probesetStart <- aggregate(as.data.frame(start), list(fsetid = fsetid),

min)

R> names(probesetStart) <- c("fsetid", "start")

R> probesetStop <- aggregate(as.data.frame(stop), list(fsetid = fsetid),

max)

R> names(probesetStop) <- c("fsetid", "stop")

R> detach(probeInfo)

The psInfo object will store the probeset information (probeset ID, start and stop po-

sitions), as shown below. After ordering appropriately the data, the psInfo probeset is

attached, to simplify its usage during the R session.
R> psInfo <- merge(probesetStart, probesetStop)

R> psInfo <- psInfo[order(psInfo[["start"]]),]

R> psInfo[["fsetid"]] <- as.character(psInfo[["fsetid"]])

R> attach(psInfo)

R> probesetData <- exprs(probesetSummaries[fsetid,])

R> detach(psInfo)

14

To visualize the data processed by oligo, we will use the GenomeGraphs package. To

match the genome build used to update the probe coordinates, an archived version of the

database will be queried.
R> library(GenomeGraphs)

R> probeids <- as.character(probeInfo[["fsetid"]])

R> ensembl = useMart("ensembl_mart_51", dataset = "hsapiens_gene_ensembl",

archive = T)

R> geneid <- "ENSG00000131748"

R> title <- makeTitle(text = geneid, color = "darkred")

The raw data, in the log2 scale, will be represented by the raw object below, created with

the makeExonArray constructor.
R> attach(probeInfo)

R> raw <- makeExonArray(intensity = probeData, probeStart = start,

probeEnd = stop, probeId = probeids, nProbes = rep(1,

nrow(probeInfo)), dp = DisplayPars(color = "blue",

mapColor = "dodgerblue2"), displayProbesets = FALSE)

R> detach(probeInfo)

The summarized data is also represented through an object created by makeExonArray .

The structure is identical to the one used above.
R> attach(psInfo)

R> exon <- makeExonArray(intensity = probesetData, probeStart = start,

probeEnd = stop, probeId = fsetid, nProbes = rep(1,

nrow(psInfo)), dp = DisplayPars(color = "seagreen",

mapColor = "seagreen"), displayProbesets = FALSE)

To represent the probesets designed by Affymetrix, we use an AnnotationTrack object.
R> affyModel <- makeAnnotationTrack(start = start, end = stop,

feature = "gene_model", group = geneid, dp = DisplayPars(gene_model = "darkgreen"))

R> detach(psInfo)

The gene and transcripts representations are build as follows. Affymetrix probes will be

represented in green, while the gene will be in orange; transcripts are represented in blue.
R> gene <- makeGene(id = geneid, biomart = ensembl)

R> transcript <- makeTranscript(id = geneid, biomart = ensembl)

R> legend <- makeLegend(c("Affymetrix", "Gene"), fill = c("darkgreen",

"orange"))

Figure 7, generated with the gdPlot function, shows the representation of the log2-

intensities and summaries at the exon level. It also shows probesets, gene and transcripts on

the region of interest.

15

R> gdPlot(list(title, raw, exon, affyModel, gene, transcript,

legend), minBase = 35067500, maxBase = 35068900)

Figure 7: Visual representation of observed log2-intensities and summarized data at the exon
level for gene ENSG00000131748. The probes, gene and transcript are also represented,
respectively, in green, orange and blue.

Below, we identify the meta-probeset ID associated to the probes used above. Once that

is known, we can extract the proper gene-level summaries stored in geneSummaries.
R> mps <- unique(probeInfo[["meta_fsetid"]])

R> mps <- as.character(mps)

R> mps

[1] "3720343"

Therefore, the standard accessors can be used to obtain the gene summaries for the unit

above. Figure 8 shows the expressions for gene ENSG00000131748 across the 33 samples

available on this dataset.
R> gSummaries <- exprs(geneSummaries[mps,])

R> x <- 1:length(gSummaries)

R> plot(x, gSummaries, xlab = "Sample", ylab = "Expression",

main = geneid)

16

Figure 8: Expression levels estimated through RMA at the gene level.

4 Interfacing with ACME to Find Enriched Regions Us-

ing Tiling Arrays

On this Section, we demonstrate how oligo can be easily combined with tools that rely

on the structure implemented in the Biobase package. Using a sample ChIP-chip dataset4

provided by NimbleGen, we use the getNgsColorsInfo function to obtain the information

regarding channels and sample names for the XYS files saved in the tilingData directory.

The getNgsColorsInfo parses the file names and, using the _532 and _635 strings in the

names, suggests channels and sample names for each XYS file available.
R> library(oligo)

R> info <- getNgsColorsInfo("tilingData", full = TRUE)

R> head(info)

color1 color2 sampleNames

1 tilingData/92204_532.xys tilingData/92204_635.xys 92204

2 tilingData/92207_532.xys tilingData/92207_635.xys 92207

3 tilingData/92369_532.xys tilingData/92369_635.xys 92369

4 tilingData/94187_532.xys tilingData/94187_635.xys 94187

Combining the results in info with read.xyfiles2, we read the XYS files using a data

structure that simplifies the data management across different channels.

4Available by request

17

R> nimbleTilingFS <- read.xysfiles2(info[, 2], info[, 1],

sampleNames = info[, 3])

The user can access the channel specific data by calling the channel method. The resulting

object is an ExpressionSet object that the user can use as required.
R> c1 <- channel(nimbleTilingFS, "channel1")

R> c2 <- channel(nimbleTilingFS, "channel2")

Detailed information on the PM probes available on the array can be obtained by directly

querying the annotation package. The call below will extract the fid, fsetid, chromosome

and start position of each probe from the annotation package and order the results by

chromosome and start position.
R> sql <- paste("SELECT fid, fsetid, chrom as chromosome, position as start",

"FROM pmfeature INNER JOIN featureSet USING(fsetid)",

"ORDER BY chrom, position")

R> annotPM <- dbGetQuery(db(nimbleTilingFS), sql)

Using the probe sequence, the end position of the probe can be easily obtained. We load

the sequences directly, so the fid field can be used to order the sequences appropriately.
R> data(pmSequence, package = annotation(nimbleTilingFS))

R> idx <- match(annotPM[["fid"]], pmSequence[["fid"]])

R> pmSequence <- pmSequence[idx,]

To obtain the end position, we use width, defined in the Biostrings package.
R> attach(annotPM)

R> library(Biostrings)

R> annotPM[["end"]] <- start + width(pmSequence[["sequence"]]) -

1

R> head(annotPM)

fid fsetid chromosome start end

1 392369 5622 chr1 56753 56808

2 286872 5622 chr1 56853 56909

3 229027 5622 chr1 56953 57007

4 386658 5622 chr1 57053 57114

5 85534 5622 chr1 57153 57202

6 170025 5622 chr1 57253 57307

The fid field corresponds to the row number in the nimbleTilingFS object. When

applied to the raw data object, the getM function returns a matrix with the log2-ratio of the

intensities. Below, we get the log2-ratios corresponding to the PM probes described in the

annotPM object.

18

R> ratioPM <- getM(nimbleTilingFS)[fid,]

R> dimnames(ratioPM) <- NULL

R> detach(annotPM)

R> class(ratioPM)

[1] "matrix"

By converting annotPM to an AnnotatedDataFrame, it can be used in the featureData

slot of eSet-like objects.
R> annotPM <- as(annotPM, "AnnotatedDataFrame")

We will use the ACME package to calculate enrichment, using algorithms that are insen-

sitive to normalization strategies and array noise. To work with this package, we need to

create, first, an ACMESet object, which contains chromosome, start and end positions in

the featureData slot.
R> library(ACME)

R> acme <- new("ACMESet", exprs = ratioPM, featureData = annotPM)

The do.aGFF.calc function processes the ACMESet object, using a window size and

threshold to identify the positive probes in the object.
R> calc <- do.aGFF.calc(acme, window = 1000, thresh = 0.95)

The calc object is then used to find enriched regions with the findRegions function, as

shown below.
R> regs <- findRegions(calc)

R> head(regs)

Length TF StartInd EndInd Sample Chromosome Start

1.chr1.1 2179 FALSE 1 2179 1 chr1 56753

1.chr1.2 8 TRUE 2180 2187 1 chr1 7943079

1.chr1.3 18 FALSE 2188 2205 1 chr1 7943979

1.chr1.4 8 TRUE 2206 2213 1 chr1 8009343

1.chr1.5 251 FALSE 2214 2464 1 chr1 8010143

1.chr1.6 6 TRUE 2465 2470 1 chr1 9893303

End Median Mean

1.chr1.1 7925574 5.164068e-01 5.290025e-01

1.chr1.2 7943879 1.451904e-05 3.231746e-05

1.chr1.3 8009243 4.002685e-01 3.273235e-01

1.chr1.4 8010043 5.670709e-08 3.615056e-05

1.chr1.5 9893203 5.438609e-01 5.414843e-01

1.chr1.6 9893803 2.471619e-05 4.113231e-05

19

References

Benilton S Carvalho, Henrik Bengtsson, Terence P Speed, and Rafael Irizarry. Ex-

ploration, normalization, and genotype calls of high-density oligonucleotide snp array

data. Biostatistics, 8(2):485–99, Apr 2007. doi: 10.1093/biostatistics/kxl042. URL

http://biostatistics.oxfordjournals.org/cgi/content/full/8/2/485.

Rafael Irizarry, Bridget Hobbs, Francois Collin, Yasmin D Beazer-Barclay, Kristen J An-

tonellis, Uwe Scherf, and Terence P Speed. Exploration, normalization, and summaries of

high density oligonucleotide array probe level data. Biostatistics, 4(2):249–264, Apr 2003a.

doi: 10.1093/biostatistics/4.2.249. URL http://dx.doi.org/10.1093/biostatistics/

4.2.249.

Rafael Irizarry, Siew Loon Ooi, Zhijin Wu, and Jef D Boeke. Use of mixture models in

a microarray-based screening procedure for detecting differentially represented yeast mu-

tants. Stat Appl Genet Mol Biol, 2:Article1, 2003b. doi: 10.2202/1544-6115.1002. URL

http://dx.doi.org/10.2202/1544-6115.1002.

S Lin, Benilton S Carvalho, D Cutler, D Arking, A Chakravarti, and Rafael Irizarry. Val-

idation and extension of an empirical bayes method for snp calling on affymetrix mi-

croarrays. Genome Biol, 9(4):R63, Apr 2008. doi: 10.1186/gb-2008-9-4-r63. URL

http://genomebiology.com/2008/9/4/R63.

Zhijin Wu, Rafael Irizarry, Robert C Gentleman, and F Martinez-Murillo A model-based

background adjustment for oligonucleotide expression arrays. Journal of the American

Statistical Association, 99(468):909–917, Dec 2004. doi: 10.1198/016214504000000683.

URL http://pubs.amstat.org/doi/pdf/10.1198/016214504000000683.

20

http://biostatistics.oxfordjournals.org/cgi/content/full/8/2/485
http://dx.doi.org/10.1093/biostatistics/4.2.249
http://dx.doi.org/10.1093/biostatistics/4.2.249
http://dx.doi.org/10.2202/1544-6115.1002
http://genomebiology.com/2008/9/4/R63
http://pubs.amstat.org/doi/pdf/10.1198/016214504000000683

	Preprocessing Expression Arrays
	Obtaining Genotype Calls from SNP Arrays
	Preprocessing Exon Arrays
	Interfacing with ACME to Find Enriched Regions Using Tiling Arrays

